Your browser doesn't support javascript.
loading
Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents.
Li, Mingming; Xiao, Xiao; Wang, Shipei; Zhang, Xujing; Li, Junjie; Pavlostathis, Spyros G; Luo, Xubiao; Luo, Shenglian; Zeng, Guisheng.
Afiliação
  • Li M; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
  • Xiao X; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
  • Wang S; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
  • Zhang X; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
  • Li J; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
  • Pavlostathis SG; School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332-0512, USA.
  • Luo X; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
  • Luo S; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
  • Zeng G; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3
Environ Pollut ; 261: 114177, 2020 Jun.
Article em En | MEDLINE | ID: mdl-32088437
Plant-derived materials as environmentally friendly biosorbents to remove heavy metals from wastewater have been extensively studied. However, the chemical oxygen demand (COD) increase caused by the plant-derived biosorbent has not been considered previously. In this study, water hyacinth was used as biosorbent to remove Cd(II) from wastewater. About 66% of Cd(II) was removed by the biosorbent with a maximum biosorption capacity (qmax) of 21.6 mg g-1. However, the COD of the filtrate increased from 0 to 292 mg L-1 during this process. Subsequently, endophytes, microalgae and the microalgae-endophyte symbiotic system (MESS) were assessed for the simultaneous Cd(II) and COD removal. Among these three systems, the MESS achieved the best performance. After 3 d of inoculation, the extent of total Cd(II) removal increased to 99.2% while COD decreased to 77 mg L-1. This study provides a new insight into the application of a plant-derived biosorbent in combination with microalgae and endophytes for the effective treatment of heavy metal-bearing wastewater.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados / Microalgas Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados / Microalgas Idioma: En Ano de publicação: 2020 Tipo de documento: Article