Your browser doesn't support javascript.
loading
Natural Killer Cells Dampen the Pathogenic Features of Recall Responses to Influenza Infection.
Mooney, Jason P; Qendro, Tedi; Keith, Marianne; Philbey, Adrian W; Groves, Helen T; Tregoning, John S; Goodier, Martin R; Riley, Eleanor M.
Afiliação
  • Mooney JP; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Qendro T; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
  • Keith M; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Philbey AW; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
  • Groves HT; Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
  • Tregoning JS; Department of Medicine, Imperial College London, London, United Kingdom.
  • Goodier MR; Department of Medicine, Imperial College London, London, United Kingdom.
  • Riley EM; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Front Immunol ; 11: 135, 2020.
Article em En | MEDLINE | ID: mdl-32117282
ABSTRACT
Despite evidence of augmented Natural Killer (NK) cell responses after influenza vaccination, the role of these cells in vaccine-induced immunity remains unclear. Here, we hypothesized that NK cells might increase viral clearance but possibly at the expense of increased severity of pathology. On the contrary, we found that NK cells serve a homeostatic role during influenza virus infection of vaccinated mice, allowing viral clearance with minimal pathology. Using a diphtheria toxin receptor transgenic mouse model, we were able to specifically deplete NKp46+ NK cells through the administration of diphtheria toxin. Using this model, we assessed the effect of NK cell depletion prior to influenza challenge in vaccinated and unvaccinated mice. NK-depleted, vaccinated animals lost significantly more weight after viral challenge than vaccinated NK intact animals, indicating that NK cells ameliorate disease in vaccinated animals. However, there was also a significant reduction in viral load in NK-depleted, unvaccinated animals indicating that NK cells also constrain viral clearance. Depletion of NK cells after vaccination, but 21 days before infection, did not affect viral clearance or weight loss-indicating that it is the presence of NK cells during the infection itself that promotes homeostasis. Further work is needed to identify the mechanism(s) by which NK cells regulate adaptive immunity in influenza-vaccinated animals to allow efficient and effective virus control whilst simultaneously minimizing inflammation and pathology.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vacinas contra Influenza / Células Matadoras Naturais / Infecções por Orthomyxoviridae Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vacinas contra Influenza / Células Matadoras Naturais / Infecções por Orthomyxoviridae Idioma: En Ano de publicação: 2020 Tipo de documento: Article