Your browser doesn't support javascript.
loading
Deciphering the internalization mechanism of WRAP:siRNA nanoparticles.
Deshayes, Sébastien; Konate, Karidia; Dussot, Marion; Chavey, Bérengère; Vaissière, Anaïs; Van, Thi Nhu Ngoc; Aldrian, Gudrun; Padari, Kärt; Pooga, Margus; Vivès, Eric; Boisguérin, Prisca.
Afiliação
  • Deshayes S; Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
  • Konate K; Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
  • Dussot M; Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
  • Chavey B; Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France; Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier, CEDEX 4, France.
  • Vaissière A; Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
  • Van TNN; Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier, CEDEX 4, France.
  • Aldrian G; Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier, CEDEX 4, France.
  • Padari K; Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
  • Pooga M; Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
  • Vivès E; Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
  • Boisguérin P; Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France. Electronic address: prisca.boisguerin@crbm.cnrs.fr.
Biochim Biophys Acta Biomembr ; 1862(6): 183252, 2020 06 01.
Article em En | MEDLINE | ID: mdl-32135145
ABSTRACT
Gene silencing mediated by double-stranded small interfering RNA (siRNA) has been widely investigated as a potential therapeutic approach for a variety of diseases and, indeed, the first therapeutic siRNA was approved by the FDA in 2018. As an alternative to the traditional delivery systems for nucleic acids, peptide-based nanoparticles (PBNs) have been applied successfully for siRNA delivery. Recently, we have developed amphipathic cell-penetrating peptides (CPPs), called WRAP allowing a rapid and efficient siRNA delivery into several cell lines at low doses (20 to 50 nM). In this study, using a highly specific gene silencing system, we aimed to elucidate the cellular uptake mechanism of WRAPsiRNA nanoparticles by combining biophysical, biological, confocal and electron microscopy approaches. We demonstrated that WRAPsiRNA complexes remain fully active in the presence of chemical inhibitors of different endosomal pathways suggesting a direct cell membrane translocation mechanism. Leakage studies on lipid vesicles indicated membrane destabilization properties of the nanoparticles and this was supported by the measurement of WRAPsiRNA internalization in dynamin triple-KO cells. However, we also observed some evidences for an endocytosis-dependent cellular internalization. Indeed, nanoparticles co-localized with transferrin, siRNA silencing was inhibited by the scavenger receptor A inhibitor Poly I and nanoparticles encapsulated in vesicles were observed by electron microscopy in U87 cells. In conclusion, we demonstrate here that the efficiency of WRAPsiRNA nanoparticles is mainly based on the use of multiple internalization mechanisms including direct translocation as well as endocytosis-dependent pathways.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / RNA Interferente Pequeno / Endocitose / Nanopartículas / Peptídeos Penetradores de Células Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / RNA Interferente Pequeno / Endocitose / Nanopartículas / Peptídeos Penetradores de Células Idioma: En Ano de publicação: 2020 Tipo de documento: Article