Your browser doesn't support javascript.
loading
Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring.
Kiral, Ferdi Ridvan; Linneweber, Gerit Arne; Mathejczyk, Thomas; Georgiev, Svilen Veselinov; Wernet, Mathias F; Hassan, Bassem A; von Kleist, Max; Hiesinger, Peter Robin.
Afiliação
  • Kiral FR; Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany.
  • Linneweber GA; Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany.
  • Mathejczyk T; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France.
  • Georgiev SV; Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany.
  • Wernet MF; Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany.
  • Hassan BA; Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany.
  • von Kleist M; Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany.
  • Hiesinger PR; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France.
Nat Commun ; 11(1): 1325, 2020 03 12.
Article em En | MEDLINE | ID: mdl-32165611
ABSTRACT
Brain wiring is remarkably precise, yet most neurons readily form synapses with incorrect partners when given the opportunity. Dynamic axon-dendritic positioning can restrict synaptogenic encounters, but the spatiotemporal interaction kinetics and their regulation remain essentially unknown inside developing brains. Here we show that the kinetics of axonal filopodia restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses. Using 4D imaging in developing Drosophila brains, we show that filopodial kinetics are regulated by autophagy, a prevalent degradation mechanism whose role in brain development remains poorly understood. With surprising specificity, autophagosomes form in synaptogenic filopodia, followed by filopodial collapse. Altered autophagic degradation of synaptic building material quantitatively regulates synapse formation as shown by computational modeling and genetic experiments. Increased filopodial stability enables incorrect synaptic partnerships. Hence, filopodial autophagy restricts inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudópodes / Autofagia / Sinapses / Encéfalo / Drosophila melanogaster Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudópodes / Autofagia / Sinapses / Encéfalo / Drosophila melanogaster Idioma: En Ano de publicação: 2020 Tipo de documento: Article