Isolation, characterization and application of theophylline-degrading Aspergillus fungi.
Microb Cell Fact
; 19(1): 72, 2020 Mar 19.
Article
em En
| MEDLINE
| ID: mdl-32192512
BACKGROUND: Caffeine, theobromine and theophylline are main purine alkaloid in tea. Theophylline is the downstream metabolite and it remains at a very low level in Camellia sinensis. In our previous study, Aspergillus sydowii could convert caffeine into theophylline in solid-state fermentation of pu-erh tea through N-demethylation. In this study, tea-derived fungi caused theophylline degradation in the solid-state fermentation. The purpose of this study is identify and isolate theophylline-degrading fungi and investigate their application in production of methylxanthines with theophylline as feedstock through microbial conversion. RESULTS: Seven tea-derived fungi were collected and identified by ITS, ß-tubulin and calmodulin gene sequences, Aspergillus ustus, Aspergillus tamarii, Aspergillus niger and A. sydowii associated with solid-state fermentation of pu-erh tea have shown ability to degrade theophylline in liquid culture. Particularly, A. ustus and A. tamarii could degrade theophylline highly significantly (p < 0.01). 1,3-dimethyluric acid, 3-methylxanthine, 3-methyluric acid, xanthine and uric acid were detected consecutively by HPLC in A. ustus and A. tamarii, respectively. The data from absolute quantification analysis suggested that 3-methylxanthine and xanthine were the main degraded metabolites in A. ustus and A. tamarii, respectively. 129.48 ± 5.81 mg/L of 3-methylxanthine and 159.11 ± 10.8 mg/L of xanthine were produced by A. ustus and A. tamarii in 300 mg/L of theophylline liquid medium, respectively. CONCLUSIONS: For the first time, we confirmed that isolated A. ustus, A. tamarii degrade theophylline through N-demethylation and oxidation. We were able to biologically produce 3-methylxanthine and xanthine efficiently from theophylline through a new microbial synthesis platform with A. ustus and A. tamarii as appropriate starter strains.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Aspergillus
/
Teofilina
/
Xantinas
/
Xantina
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article