Your browser doesn't support javascript.
loading
Serpina3c Regulates Adipogenesis by Modulating Insulin Growth Factor 1 and Integrin Signaling.
Choi, Yoonjeong; Choi, Hyeonjin; Yoon, Bo Kyung; Lee, Hyemin; Seok, Jo Woon; Kim, Hyo Jung; Kim, Jae-Woo.
Afiliação
  • Choi Y; Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, South Kore
  • Choi H; Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
  • Yoon BK; Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, South Kore
  • Lee H; Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University,
  • Seok JW; Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, South Kore
  • Kim HJ; Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea. Electronic address: hjkim17@yuhs.ac.
  • Kim JW; Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, South Kore
iScience ; 23(3): 100961, 2020 Mar 27.
Article em En | MEDLINE | ID: mdl-32193145
Preadipocyte differentiation can be induced upon a hormonal treatment, and various factors secreted by the cells may contribute to adipogenesis. In this study, RNA-seq revealed Serpina3c as a critical factor regulating the signaling network during adipogenesis. Serpina3c is a secretory protein and is highly expressed in fat tissues. Knockdown of Serpina3c decreased adipogenesis by attenuating the mitotic clonal expansion of 3T3-L1 cells. These cells exhibited decreases in integrin α5, which abolished the phosphorylation of integrin ß3. We found that Serpina3c inhibits a serine protease that regulates integrin α5 degradation. Knockdown of Serpina3c disrupted integrin-mediated insulin growth factor 1 (IGF-1) signaling and ERK activation. Serpina3c-mediated regulation of integrin-IGF-1 signaling is also associated with AKT activation, which affects the nuclear translocation of GSK3ß. Altogether, our results indicate that Serpina3c secreted from differentiating adipocytes inhibits serine proteases to modulate integrin/IGF-1-mediated ERK and AKT signaling and thus is a critical factor contributing to adipogenesis.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article