Your browser doesn't support javascript.
loading
Prediction of stress and drug craving ninety minutes in the future with passively collected GPS data.
Epstein, David H; Tyburski, Matthew; Kowalczyk, William J; Burgess-Hull, Albert J; Phillips, Karran A; Curtis, Brenda L; Preston, Kenzie L.
Afiliação
  • Epstein DH; Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224 USA.
  • Tyburski M; Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224 USA.
  • Kowalczyk WJ; Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224 USA.
  • Burgess-Hull AJ; Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224 USA.
  • Phillips KA; Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224 USA.
  • Curtis BL; Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224 USA.
  • Preston KL; Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224 USA.
NPJ Digit Med ; 3: 26, 2020.
Article em En | MEDLINE | ID: mdl-32195362
ABSTRACT
Just-in-time adaptive interventions (JITAIs), typically smartphone apps, learn to deliver therapeutic content when users need it. The challenge is to "push" content at algorithmically chosen moments without making users trigger it with effortful input. We trained a randomForest algorithm to predict heroin craving, cocaine craving, or stress (reported via smartphone app 3x/day) 90 min into the future, using 16 weeks of field data from 189 outpatients being treated for opioid-use disorder. We used only one form of continuous input (along with person-level demographic data), collected passively an indicator of environmental exposures along the past 5 h of movement, as assessed by GPS. Our models achieved excellent overall accuracy-as high as 0.93 by the end of 16 weeks of tailoring-but this was driven mostly by correct predictions of absence. For predictions of presence, "believability" (positive predictive value, PPV) usually peaked in the high 0.70s toward the end of the 16 weeks. When the prediction target was more rare, PPV was lower. Our findings complement those of other investigators who use machine learning with more broadly based "digital phenotyping" inputs to predict or detect mental and behavioral events. When target events are comparatively subtle, like stress or drug craving, accurate detection or prediction probably needs effortful input from users, not passive monitoring alone. We discuss ways in which accuracy is difficult to achieve or even assess, and warn that high overall accuracy (including high specificity) can mask the abundance of false alarms that low PPV reveals.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article