Your browser doesn't support javascript.
loading
Lipid rafts are required for effective renal D1 dopamine receptor function.
Tiu, Andrew C; Yang, Jian; Asico, Laureano D; Konkalmatt, Prasad; Zheng, Xiaoxu; Cuevas, Santiago; Wang, Xiaoyan; Lee, Hewang; Mazhar, Momina; Felder, Robin A; Jose, Pedro A; Villar, Van Anthony M.
Afiliação
  • Tiu AC; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
  • Yang J; Department of Medicine, Einstein Medical Center, Philadelphia, PA, USA.
  • Asico LD; Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.
  • Konkalmatt P; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
  • Zheng X; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
  • Cuevas S; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
  • Wang X; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
  • Lee H; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
  • Mazhar M; Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
  • Felder RA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
  • Jose PA; Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA.
  • Villar VAM; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
FASEB J ; 34(5): 6999-7017, 2020 05.
Article em En | MEDLINE | ID: mdl-32259353
ABSTRACT
Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by ß-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Dopamina D1 / Microdomínios da Membrana / Rim Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Dopamina D1 / Microdomínios da Membrana / Rim Idioma: En Ano de publicação: 2020 Tipo de documento: Article