Your browser doesn't support javascript.
loading
Tumor Membrane Vesicle Vaccine Augments the Efficacy of Anti-PD1 Antibody in Immune Checkpoint Inhibitor-Resistant Squamous Cell Carcinoma Models of Head and Neck Cancer.
Bommireddy, Ramireddy; Munoz, Luis E; Kumari, Anita; Huang, Lei; Fan, Yijian; Monterroza, Lenore; Pack, Christopher D; Ramachandiran, Sampath; Reddy, Shaker J C; Kim, Janet; Chen, Zhuo G; Saba, Nabil F; Shin, Dong M; Selvaraj, Periasamy.
Afiliação
  • Bommireddy R; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Munoz LE; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Kumari A; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Huang L; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Fan Y; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Monterroza L; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Pack CD; Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA.
  • Ramachandiran S; Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA.
  • Reddy SJC; Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA.
  • Kim J; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Chen ZG; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Saba NF; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Shin DM; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Selvaraj P; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Vaccines (Basel) ; 8(2)2020 Apr 14.
Article em En | MEDLINE | ID: mdl-32295135
Immune checkpoint inhibitor (ICI) immunotherapy improved the survival of head and neck squamous cell carcinoma (HNSCC) patients. However, more than 80% of the patients are still resistant to this therapy. To test whether the efficacy of ICI therapy can be improved by vaccine-induced immunity, we investigated the efficacy of a tumor membrane-based vaccine immunotherapy in murine models of HNSCC. The tumors, grown subcutaneously, are used to prepare tumor membrane vesicles (TMVs). TMVs are then incorporated with glycolipid-anchored immunostimulatory molecules GPI-B7-1 and GPI-IL-12 by protein transfer to generate the TMV vaccine. This TMV vaccine inhibited tumor growth and improved the survival of mice challenged with SCCVII tumor cells. The tumor-free mice survived for several months, remained tumor-free, and were protected following a secondary tumor cell challenge, suggesting that the TMV vaccine induced an anti-tumor immune memory response. However, no synergy with anti-PD1 mAb was observed in this model. In contrast, the TMV vaccine was effective in inhibiting MOC1 and MOC2 murine oral cancer models and synergized with anti-PD1 mAb in extending the survival of tumor-bearing mice. These observations suggest that tumor tissue based TMV vaccines can be harnessed to develop an effective personalized immunotherapy for HNSCC that can enhance the efficacy of immune checkpoint inhibitors.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article