Your browser doesn't support javascript.
loading
Single-Spin Magnetomechanics with Levitated Micromagnets.
Gieseler, J; Kabcenell, A; Rosenfeld, E; Schaefer, J D; Safira, A; Schuetz, M J A; Gonzalez-Ballestero, C; Rusconi, C C; Romero-Isart, O; Lukin, M D.
Afiliação
  • Gieseler J; Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Kabcenell A; Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Rosenfeld E; Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Schaefer JD; Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Safira A; Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Schuetz MJA; Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Gonzalez-Ballestero C; Institute for Quantum Optics and Quantum Information of the Austrian Academy of sciences, A-6020 Innsbruck, Austria.
  • Rusconi CC; Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria.
  • Romero-Isart O; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany.
  • Lukin MD; Institute for Quantum Optics and Quantum Information of the Austrian Academy of sciences, A-6020 Innsbruck, Austria.
Phys Rev Lett ; 124(16): 163604, 2020 Apr 24.
Article em En | MEDLINE | ID: mdl-32383959
ABSTRACT
We demonstrate a new mechanical transduction platform for individual spin qubits. In our approach, single micromagnets are trapped using a type-II superconductor in proximity of spin qubits, enabling direct magnetic coupling between the two systems. Controlling the distance between the magnet and the superconductor during cooldown, we demonstrate three-dimensional trapping with quality factors around 1×10^{6} and kHz trapping frequencies. We further exploit the large magnetic moment to mass ratio of this mechanical oscillator to couple its motion to the spin degrees of freedom of an individual nitrogen vacancy center in diamond. Our approach provides a new path towards interfacing individual spin qubits with mechanical motion for testing quantum mechanics with mesoscopic objects, realization of quantum networks, and ultrasensitive metrology.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article