Your browser doesn't support javascript.
loading
Biological Basis for Threshold Responses to Methylating Agents.
Thomas, Adam D.
Afiliação
  • Thomas AD; Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
Chem Res Toxicol ; 33(9): 2219-2224, 2020 09 21.
Article em En | MEDLINE | ID: mdl-32388971
ABSTRACT
The cellular outcomes of chemical exposure are as much about the cellular response to the chemical as it is an effect of the chemical. We are growing in our understanding of the genotoxic interaction between chemistry and biology. For example, recent data has revealed the biological basis for mutation induction curves for a methylating chemical, which has been shown to be dependent on the repair capacity of the cells. However, this is just one end point in the toxicity pathway from chemical exposure to cell death. Much remains to be known in order for us to predict how cells will respond to a certain dose. Methylating agents, a subset of alkylating agents, are of particular interest, because of the variety of adverse genetic end points that can result, not only at increasing doses, but also over time. For instance, methylating agents are mutagenic, their potency, for this end point, is determined by the cellular repair capacity of an enzyme called methylguanine DNA-methyltransferase (MGMT) and its ability to repair the induceed methyl adducts. However, methyl adducts can become clastogenic. Erroneous biological processing will convert mutagenic adducts to clastogenic events in the form of double strand breaks (DSBs). How the cell responds to DSBs is via a cascade of protein kinases, which is called the DNA damage response (DDR), which will determine if the damage is repaired effectively, via homologous recombination, or with errors, via nonhomologous end joining, or whether the cell dies via apoptosis or enters senescence. The fate of cells may be determined by the extent of damage and the resulting strength of DDR signaling. Therefore, thresholds of damage may exist that determine cell fate. Such thresholds would be dependent on each of the repair and response mechanisms that these methyl adducts stimulate. The molecular mechanism of how methyl adducts kill cells is still to be fully resolved. If we are able to quantify each of these thresholds of damage for a given cell, then we can ascertain, of the many adducts that are induced, what proportion of them are mutagenic, what proportion are clastogenic, and how many of these clastogenic events are toxic. This review examines the possibility of dose and damage thresholds for methylating agents, from the perspective of the underlying evolutionary mechanisms that may be accountable.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: O(6)-Metilguanina-DNA Metiltransferase / Alquilantes / Inibidores Enzimáticos Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: O(6)-Metilguanina-DNA Metiltransferase / Alquilantes / Inibidores Enzimáticos Idioma: En Ano de publicação: 2020 Tipo de documento: Article