Your browser doesn't support javascript.
loading
Unveiling the activation dynamics of a fold-switch bacterial glycosyltransferase by 19F NMR.
Liebau, Jobst; Tersa, Montse; Trastoy, Beatriz; Patrick, Joan; Rodrigo-Unzueta, Ane; Corzana, Francisco; Sparrman, Tobias; Guerin, Marcelo E; Mäler, Lena.
Afiliação
  • Liebau J; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
  • Tersa M; Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
  • Trastoy B; Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
  • Patrick J; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
  • Rodrigo-Unzueta A; Departamento de Bioquímica and Instituto Biofisika, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Bizkaia, Spain.
  • Corzana F; Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, Logroño, Spain.
  • Sparrman T; Department of Chemistry, Umeå University, Umeå, Sweden.
  • Guerin ME; Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain mrcguerin@cicbiogune.es lena.maler@dbb.su.se.
  • Mäler L; Departamento de Bioquímica and Instituto Biofisika, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Bizkaia, Spain.
J Biol Chem ; 295(29): 9868-9878, 2020 07 17.
Article em En | MEDLINE | ID: mdl-32434931
ABSTRACT
Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix-to-ß-strand and ß-strand-to-α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using 19F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Dobramento de Proteína / Mycobacterium smegmatis / Simulação de Dinâmica Molecular / Manosiltransferases Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Dobramento de Proteína / Mycobacterium smegmatis / Simulação de Dinâmica Molecular / Manosiltransferases Idioma: En Ano de publicação: 2020 Tipo de documento: Article