Your browser doesn't support javascript.
loading
Direct Correlation of Nanoscale Morphology and Device Performance to Study Photocurrent Generation in Donor-Enriched Phases of Polymer Solar Cells.
Ben Dkhil, Sadok; Perkhun, Pavlo; Luo, Chieh; Müller, David; Alkarsifi, Riva; Barulina, Elena; Avalos Quiroz, Yatzil Alejandra; Margeat, Olivier; Dubas, Stephan Thierry; Koganezawa, Tomoyuki; Kuzuhara, Daiki; Yoshimoto, Noriyuki; Caddeo, Claudia; Mattoni, Alessandro; Zimmermann, Birger; Würfel, Uli; Pfannmöller, Martin; Bals, Sara; Ackermann, Jörg; Videlot-Ackermann, Christine.
Afiliação
  • Ben Dkhil S; Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France.
  • Perkhun P; Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France.
  • Luo C; Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany.
  • Müller D; Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany.
  • Alkarsifi R; Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France.
  • Barulina E; Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France.
  • Avalos Quiroz YA; Dracula Technologies, 4 Rue Georges Auric, 26000 Valence, France.
  • Margeat O; Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France.
  • Dubas ST; Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France.
  • Koganezawa T; The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
  • Kuzuhara D; Center of Excellence on Petrochemical and Materials Technology, Bangkok 10330, Thailand.
  • Yoshimoto N; Industrial Application Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan.
  • Caddeo C; Department of Physical Science and Materials Engineering, Iwate University, Ueda, Morioka 020 8551, Japan.
  • Mattoni A; Department of Physical Science and Materials Engineering, Iwate University, Ueda, Morioka 020 8551, Japan.
  • Zimmermann B; Istituto Officina dei Material (CNR-IOM), UOS Cagliari SLACS, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy.
  • Würfel U; Istituto Officina dei Material (CNR-IOM), UOS Cagliari SLACS, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy.
  • Pfannmöller M; Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany.
  • Bals S; Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany.
  • Ackermann J; Materials Research Center FMF, University of Freiburg, 79104 Freiburg im Breisgau, Germany.
  • Videlot-Ackermann C; Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
ACS Appl Mater Interfaces ; 12(25): 28404-28415, 2020 Jun 24.
Article em En | MEDLINE | ID: mdl-32476409
ABSTRACT
The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7)[6,6]phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 11.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 10.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article