Your browser doesn't support javascript.
loading
A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations.
Bonafé, Franco P; Aradi, Bálint; Hourahine, Ben; Medrano, Carlos R; Hernández, Federico J; Frauenheim, Thomas; Sánchez, Cristián G.
Afiliação
  • Bonafé FP; Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
  • Aradi B; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina.
  • Hourahine B; Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina.
  • Medrano CR; Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany.
  • Hernández FJ; SUPA, Department of Physics, John Anderson Building, The University of Strathclyde, 107 Rottenrow, Glasgow G15 6QN, United Kingdom.
  • Frauenheim T; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina.
  • Sánchez CG; Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina.
J Chem Theory Comput ; 16(7): 4454-4469, 2020 Jul 14.
Article em En | MEDLINE | ID: mdl-32511909
The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear-electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the "LDA+U" and "pseudo SIC" methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article