Your browser doesn't support javascript.
loading
Quantitative phase-mode electrostatic force microscopy on silicon oxide nanostructures.
Albonetti, C; Chiodini, S; Annibale, P; Stoliar, P; Martinez, R V; Garcia, R; Biscarini, F.
Afiliação
  • Albonetti C; Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy.
  • Chiodini S; Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy.
  • Annibale P; Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, Spain.
  • Stoliar P; Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy.
  • Martinez RV; Present address: Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
  • Garcia R; Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy.
  • Biscarini F; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
J Microsc ; 280(3): 252-269, 2020 12.
Article em En | MEDLINE | ID: mdl-32538463
ABSTRACT
Phase-mode electrostatic force microscopy (EFM-Phase) is a viable technique to image surface electrostatic potential of silicon oxide stripes fabricated by oxidation scanning probe lithography, exhibiting an inhomogeneous distribution of localized charges trapped within the stripes during the electrochemical reaction. We show here that these nanopatterns are useful benchmark samples for assessing the spatial/voltage resolution of EFM-phase. To quantitatively extract the relevant observables, we developed and applied an analytical model of the electrostatic interactions in which the tip and the surface are modelled in a prolate spheroidal coordinates system, fitting accurately experimental data. A lateral resolution of ∼60 nm, which is comparable to the lateral resolution of EFM experiments reported in the literature, and a charge resolution of ∼20 electrons are achieved. This electrostatic analysis evidences the presence of a bimodal population of trapped charges in the nanopatterned stripes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article