Your browser doesn't support javascript.
loading
A predictive analytics model for differentiating between transient ischemic attacks (TIA) and its mimics.
Stanciu, Alia; Banciu, Mihai; Sadighi, Alireza; Marshall, Kyle A; Holland, Neil R; Abedi, Vida; Zand, Ramin.
Afiliação
  • Stanciu A; Freeman College of Management, Bucknell University, 1 Dent Drive, Lewisburg, PA, 17837-2005, USA.
  • Banciu M; Freeman College of Management, Bucknell University, 1 Dent Drive, Lewisburg, PA, 17837-2005, USA. mmb018@bucknell.edu.
  • Sadighi A; Department of Neurology, Division of Cerebrovascular Diseases, Geisinger Medical Center, 100 N Academy Ave, Danville, PA, 17822, USA.
  • Marshall KA; Department of Emergency Medicine, Medicine Institute, Geisinger Medical Center, 100 N Academy Ave, Danville, PA, 17822, USA.
  • Holland NR; Geisinger Commonwealth School of Medicine, 525 Pine St., Scranton, PA, 18509, USA.
  • Abedi V; Department of Neurology, Division of Cerebrovascular Diseases, Geisinger Medical Center, 100 N Academy Ave, Danville, PA, 17822, USA.
  • Zand R; Geisinger Commonwealth School of Medicine, 525 Pine St., Scranton, PA, 18509, USA.
BMC Med Inform Decis Mak ; 20(1): 112, 2020 06 18.
Article em En | MEDLINE | ID: mdl-32552700
BACKGROUND: Transient ischemic attack (TIA) is a brief episode of neurological dysfunction resulting from cerebral ischemia not associated with permanent cerebral infarction. TIA is associated with high diagnostic errors because of the subjective nature of findings and the lack of clinical and imaging biomarkers. The goal of this study was to design and evaluate a novel multinomial classification model, based on a combination of feature selection mechanisms coupled with logistic regression, to predict the likelihood of TIA, TIA mimics, and minor stroke. METHODS: We conducted our modeling on consecutive patients who were evaluated in our health system with an initial diagnosis of TIA in a 9-month period. We established the final diagnoses after the clinical evaluation by independent verification from two stroke neurologists. We used Recursive Feature Elimination (RFE) and Least Absolute Shrinkage and Selection Operator (LASSO) for prediction modeling. RESULTS: The RFE-based classifier correctly predicts 78% of the overall observations. In particular, the classifier correctly identifies 68% of the cases labeled as "TIA mimic" and 83% of the "TIA" discharge diagnosis. The LASSO classifier had an overall accuracy of 74%. Both the RFE and LASSO-based classifiers tied or outperformed the ABCD2 score and the Diagnosis of TIA (DOT) score. With respect to predicting TIA, the RFE-based classifier has 61.1% accuracy, the LASSO-based classifier has 79.5% accuracy, whereas the DOT score applied to the dataset yields an accuracy of 63.1%. CONCLUSION: The results of this pilot study indicate that a multinomial classification model, based on a combination of feature selection mechanisms coupled with logistic regression, can be used to effectively differentiate between TIA, TIA mimics, and minor stroke.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Logísticos / Isquemia Encefálica / Ataque Isquêmico Transitório / Acidente Vascular Cerebral Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Logísticos / Isquemia Encefálica / Ataque Isquêmico Transitório / Acidente Vascular Cerebral Idioma: En Ano de publicação: 2020 Tipo de documento: Article