Your browser doesn't support javascript.
loading
Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation.
Xu, Huanhuan; Wang, Litian; Shi, Boya; Hu, Lihong; Gan, Chunxia; Wang, Ya; Xiang, Zemin; Wang, Xuanjun; Sheng, Jun.
Afiliação
  • Xu H; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China.
  • Wang L; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
  • Shi B; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
  • Hu L; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
  • Gan C; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
  • Wang Y; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China.
  • Xiang Z; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China. Electronic address: xiangzmwdx@sohu.com.
  • Wang X; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China. El
  • Sheng J; Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China. Electronic address: shengjunpuer@163.com.
Biomed Pharmacother ; 129: 110441, 2020 Sep.
Article em En | MEDLINE | ID: mdl-32580047
ABSTRACT
Caffeine (1,3,7-trimethylxanthine) is a xanthine alkaloid found in a number of dietary products consumed worldwide, such as coffee, tea, and soft beverages, and is known to act as a modifying agent for cytotoxic chemotherapeutic drugs. Studies have shown that caffeine reduces the cytotoxic effects of paclitaxel and inhibits paclitaxel-induced apoptosis; however, the underlying mechanism remains unclear. Here, we investigated whether caffeine inhibits the antitumor activity of paclitaxel via down-regulation of α-tubulin acetylation. In vitro studies, involving MTT assay, wound-healing assay, cell apoptosis assay, and western blotting analysis of A549 and HeLa cells, were performed. A549 and HeLa cell-based xenografts were established, and western blotting and immunohistochemical staining were performed for in vivo studies. The results showed that caffeine promoted the growth of cancer cells treated with paclitaxel. Additionally, caffeine enhanced migration ability, inhibited apoptosis, and decreased the acetylation of α-tubulin in paclitaxel-treated cancer cells. Furthermore, caffeine decreased the inhibitory effect of paclitaxel on tumor growth through down-regulation of α-tubulin acetylation in vivo. Taken together, these findings demonstrate that caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation, suggesting that patients receiving treatment with taxanes, such as paclitaxel, should avoid consuming caffeinated beverages or foods.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tubulina (Proteína) / Cafeína / Neoplasias do Colo do Útero / Paclitaxel / Neoplasias Pulmonares / Antineoplásicos Fitogênicos Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tubulina (Proteína) / Cafeína / Neoplasias do Colo do Útero / Paclitaxel / Neoplasias Pulmonares / Antineoplásicos Fitogênicos Idioma: En Ano de publicação: 2020 Tipo de documento: Article