Your browser doesn't support javascript.
loading
Glutantßase: a database for improving the rational design of glucose-tolerant ß-glucosidases.
Mariano, Diego; Pantuza, Naiara; Santos, Lucianna H; Rocha, Rafael E O; de Lima, Leonardo H F; Bleicher, Lucas; de Melo-Minardi, Raquel Cardoso.
Afiliação
  • Mariano D; Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil. diegomariano@ufmg.br.
  • Pantuza N; Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
  • Santos LH; Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
  • Rocha REO; Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
  • de Lima LHF; Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Universidade Federal de São João Del-Rei, Campus Sete Lagoas, Sete Lagoas, 35701-970, Brazil.
  • Bleicher L; Protein Computational Biology Laboratory, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
  • de Melo-Minardi RC; Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil. raquelcm@dcc.ufmg.br.
BMC Mol Cell Biol ; 21(1): 50, 2020 Jul 01.
Article em En | MEDLINE | ID: mdl-32611314
ABSTRACT
Β-glucosidases are key enzymes used in second-generation biofuel production. They act in the last step of the lignocellulose saccharification, converting cellobiose in glucose. However, most of the ß-glucosidases are inhibited by high glucose concentrations, which turns it a limiting step for industrial production. Thus, ß-glucosidases have been targeted by several studies aiming to understand the mechanism of glucose tolerance, pH and thermal resistance for constructing more efficient enzymes. In this paper, we present a database of ß-glucosidase structures, called Glutantßase. Our database includes 3842 GH1 ß-glucosidase sequences collected from UniProt. We modeled the sequences by comparison and predicted important features in the 3D-structure of each enzyme. Glutantßase provides information about catalytic and conserved amino acids, residues of the coevolution network, protein secondary structure, and residues located in the channel that guides to the active site. We also analyzed the impact of beneficial mutations reported in the literature, predicted in analogous positions, for similar enzymes. We suggested these mutations based on six previously described mutants that showed high catalytic activity, glucose tolerance, or thermostability (A404V, E96K, H184F, H228T, L441F, and V174C). Then, we used molecular docking to verify the impact of the suggested mutations in the affinity of protein and ligands (substrate and product). Our results suggest that only mutations based on the H228T mutant can reduce the affinity for glucose (product) and increase affinity for cellobiose (substrate), which indicates an increment in the resistance to product inhibition and agrees with computational and experimental results previously reported in the literature. More resistant ß-glucosidases are essential to saccharification in industrial applications. However, thermostable and glucose-tolerant ß-glucosidases are rare, and their glucose tolerance mechanisms appear to be related to multiple and complex factors. We gather here, a set of information, and made predictions aiming to provide a tool for supporting the rational design of more efficient ß-glucosidases. We hope that Glutantßase can help improve second-generation biofuel production. Glutantßase is available at http//bioinfo.dcc.ufmg.br/glutantbase .
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Beta-Glucosidase / Biocombustíveis / Bases de Dados de Compostos Químicos Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Beta-Glucosidase / Biocombustíveis / Bases de Dados de Compostos Químicos Idioma: En Ano de publicação: 2020 Tipo de documento: Article