Your browser doesn't support javascript.
loading
Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber-Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding.
Ma, Zhonglei; Kang, Songlei; Ma, Jianzhong; Shao, Liang; Zhang, Yali; Liu, Chao; Wei, Ajing; Xiang, Xiaolian; Wei, Linfeng; Gu, Junwei.
Afiliação
  • Ma Z; College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
  • Kang S; College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
  • Ma J; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China.
  • Shao L; College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
  • Zhang Y; MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
  • Liu C; College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
  • Wei A; College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
  • Xiang X; College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
  • Wei L; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China.
  • Gu J; MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
ACS Nano ; 14(7): 8368-8382, 2020 Jul 28.
Article em En | MEDLINE | ID: mdl-32628835
ABSTRACT
High-performance electromagnetic interference (EMI) shielding materials with ultraflexibility, outstanding mechanical properties, and superior EMI shielding performances are highly desirable for modern integrated electronic and telecommunication systems in areas such as aerospace, military, artificial intelligence, and smart and wearable electronics. Herein, ultraflexible and mechanically strong aramid nanofiber-Ti3C2Tx MXene/silver nanowire (ANF-MXene/AgNW) nanocomposite papers with double-layered structures are fabricated via the facile two-step vacuum-assisted filtration followed by hot-pressing approach. The resultant double-layered nanocomposite papers with a low MXene/AgNW content of 20 wt % exhibit an excellent electrical conductivity of 922.0 S·cm-1, outstanding mechanical properties with a tensile strength of 235.9 MPa and fracture strain of 24.8%, superior EMI shielding effectiveness (EMI SE) of 48.1 dB, and high EMI SE/t of 10 688.9 dB·cm-1, benefiting from the highly efficient double-layered structures, high-performance ANF substrate, and extensive hydrogen-bonding interactions. Particularly, the nanocomposite papers show a maximum electrical conductivity of 3725.6 S·cm-1 and EMI SE of ∼80 dB at a MXene/AgNW content of 80 wt % with an absorption-dominant shielding mechanism owing to the massive ohmic losses in the highly conductive MXene/AgNW layer, multiple internal reflections between Ti3C2Tx MXene nanosheets and polarization relaxation of localized defects, and abundant terminal groups. Compared with the homogeneously blended ones, the double-layered nanocomposite papers possess greater advantages in electrical, mechanical, and EMI shielding performances. Moreover, the multifunctional double-layered nanocomposite papers exhibit excellent thermal management performances such as high Joule heating temperature at low supplied voltages, rapid response time, sufficient heating stability, and reliability. The results indicate that the double-layered nanocomposite papers have excellent potential for high-performance EMI shielding and thermal management applications in aerospace, military, artificial intelligence, and smart and wearable electronics.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article