Your browser doesn't support javascript.
loading
Single yeast cell nanomotions correlate with cellular activity.
Willaert, Ronnie G; Vanden Boer, Pieterjan; Malovichko, Anton; Alioscha-Perez, Mitchel; Radotic, Ksenija; Bartolic, Dragana; Kalauzi, Aleksandar; Villalba, Maria Ines; Sanglard, Dominique; Dietler, Giovanni; Sahli, Hichem; Kasas, Sandor.
Afiliação
  • Willaert RG; International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel-Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium-B-1015 Lausanne, Switzerland.
  • Vanden Boer P; Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
  • Malovichko A; Alliance Research Group NanoMicrobiology (NAMI), Vrije Universiteit Brussel, Brussels B-1050, Belgium-Ghent University, B-9000 Ghent, Belgium.
  • Alioscha-Perez M; Visiting professor, Department of Bioscience Engineering, University Antwerp, B-2020 Antwerp, Belgium.
  • Radotic K; International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel-Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium-B-1015 Lausanne, Switzerland.
  • Bartolic D; Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
  • Kalauzi A; Alliance Research Group NanoMicrobiology (NAMI), Vrije Universiteit Brussel, Brussels B-1050, Belgium-Ghent University, B-9000 Ghent, Belgium.
  • Villalba MI; International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel-Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium-B-1015 Lausanne, Switzerland.
  • Sanglard D; Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
  • Dietler G; International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel-Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium-B-1015 Lausanne, Switzerland.
  • Sahli H; Electronics and Informatics Dept (ETRO), AVSP Lab, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
  • Kasas S; Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia.
Sci Adv ; 6(26): eaba3139, 2020 06.
Article em En | MEDLINE | ID: mdl-32637604
ABSTRACT
Living single yeast cells show a specific cellular motion at the nanometer scale with a magnitude that is proportional to the cellular activity of the cell. We characterized this cellular nanomotion pattern of nonattached single yeast cells using classical optical microscopy. The distribution of the cellular displacements over a short time period is distinct from random motion. The range and shape of such nanomotion displacement distributions change substantially according to the metabolic state of the cell. The analysis of the nanomotion frequency pattern demonstrated that single living yeast cells oscillate at relatively low frequencies of around 2 hertz. The simplicity of the technique should open the way to numerous applications among which antifungal susceptibility tests seem the most straightforward.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae Idioma: En Ano de publicação: 2020 Tipo de documento: Article