Your browser doesn't support javascript.
loading
CCDC7 Activates Interleukin-6 and Vascular Endothelial Growth Factor to Promote Proliferation via the JAK-STAT3 Pathway in Cervical Cancer Cells.
Zhou, Cong; He, Xiang; Zeng, Qi; Zhang, Peng; Wang, Chun-Ting.
Afiliação
  • Zhou C; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
  • He X; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
  • Zeng Q; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
  • Zhang P; Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, People's Republic of China.
  • Wang CT; Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, People's Republic of China.
Onco Targets Ther ; 13: 6229-6244, 2020.
Article em En | MEDLINE | ID: mdl-32669853
OBJECTIVE: Tumor growth is one of the most lethal attributes of human malignancy. The expression of CCDC7, a novel gene which has multiple functions, has been shown to be associated with tumor growth and poor prognosis in patients with cancer. However, the specific functions of CCDC7 remain unclear. Here, we investigated the molecular mechanisms underlying the effects of CCDC7 on proliferation in cervical cancer. MATERIALS AND METHODS: The MTT and EdU assays were performed to evaluate the function of CCDC7. The immunohistochemical, quantitative real-time PCR (qRT-PCR), ELISA and Western blot assay were used to detect the gene and protein expression in tissues and cells. A xenograft test was conducted to detect the impact of CCDC7 on tumor development in vivo . RESULTS: In immunohistochemical analysis of 193 cases, normal cervical tissue and cervical cancer tissue show that CCDC7 expression is closely correlated with the development of cervical cancer and was positively correlated with the clinical stage and histological grade. Overexpression or knockdown of CCDC7 affected cell proliferation in cervical cancer cells in vitro. In a nude mouse xenograft model in vivo, knockdown of CCDC7 inhibited cell proliferation and tumor growth. Furthermore, CCDC7 overexpression upregulated interleukin (IL)-6 and vascular endothelial growth factor (VEGF) at mRNA and protein levels, and treatment with recombinant IL-6 or VEGF proteins also increased CCDC7 expression. In a case set of 80 patients with cervical cancer, we found that CCDC7, IL-6, and VEGF affected patient prognosis. Finally, inhibition of various signaling pathways using specific inhibitors indicated that CCDC7 blocked the decrease in cell proliferation observed following suppression of the JAK-STAT3 pathway, suggesting that CCDC7 functioned via this critical signaling network. CONCLUSION: Those findings indicated that CCDC7 may be a novel target for the treatment of cervical cancer and may have applications as a predictive marker for tumor growth in cervical carcinoma.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article