Your browser doesn't support javascript.
loading
Controllable growth of carbon nanosheets in the montmorillonite interlayers for high-rate and stable anode in lithium ion battery.
Chen, Mao-Sung; Fu, Wenwu; Hu, Yanjie; Chen, Mao-Yuan; Chiou, Yuh-Jing; Lin, Hong-Ming; Zhang, Ming; Shen, Zhongrong.
Afiliação
  • Chen MS; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. z-shen@fjirsm.ac.cn mingzhang@fjirsm.ac.cn.
Nanoscale ; 12(30): 16262-16269, 2020 Aug 14.
Article em En | MEDLINE | ID: mdl-32716460
ABSTRACT
A novel insertable and pseudocapacitive Li+ ion material for highly ordered layered montmorillonite/carbon is explored in the present study. The commercially available protonated montmorillonite and 3,3'-diaminobenzidine act as starting materials to synthesize the layered material via hydrothermal intercalation, oxidative polymerization and carbonization. This method of preparing montmorillonite/carbon nanocomposite exhibits several advantages. To be specific, raw materials are low cost and naturally abundant; the montmorillonite can undergo proton exchange easily to form a permutable proton-type material, and the protons in the layered nanocomposite can be directly substituted by the polymerizable molecules (e.g., 3,3'-diaminobenzidine). Accordingly, a sheet-like montmorillonite/carbon layered nanocomposite is achieved with the carbon stacking on the montmorillonite substrate for the intercalation behavior. As revealed from the electrochemical results, montmorillonite/carbon nanocomposite can deliver a high reversible capacity of 1432 mA h g-1 at 50 mA g-1 and superior rate capacity of 920 mA h g-1 at 10 000 mA g-1 for the lithium ion battery. Furthermore, the full cell with LiFePO4 as cathode and montmorillonite/carbon as anode maintains 94% capacity retention over 50 cycles as well as high coulombic efficiency.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article