Your browser doesn't support javascript.
loading
Development and validation of a RAD-Seq target-capture based genotyping assay for routine application in advanced black tiger shrimp (Penaeus monodon) breeding programs.
Guppy, Jarrod L; Jones, David B; Kjeldsen, Shannon R; Le Port, Agnes; Khatkar, Mehar S; Wade, Nicholas M; Sellars, Melony J; Steinig, Eike J; Raadsma, Herman W; Jerry, Dean R; Zenger, Kyall R.
Afiliação
  • Guppy JL; Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia. jarrod.guppy@my.jcu.edu.au.
  • Jones DB; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia. jarrod.guppy@my.jcu.edu.au.
  • Kjeldsen SR; Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.
  • Le Port A; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
  • Khatkar MS; Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.
  • Wade NM; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
  • Sellars MJ; Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.
  • Steinig EJ; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
  • Raadsma HW; Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.
  • Jerry DR; Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia.
  • Zenger KR; Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.
BMC Genomics ; 21(1): 541, 2020 Aug 05.
Article em En | MEDLINE | ID: mdl-32758142
ABSTRACT

BACKGROUND:

The development of genome-wide genotyping resources has provided terrestrial livestock and crop industries with the unique ability to accurately assess genomic relationships between individuals, uncover the genetic architecture of commercial traits, as well as identify superior individuals for selection based on their specific genetic profile. Utilising recent advancements in de-novo genome-wide genotyping technologies, it is now possible to provide aquaculture industries with these same important genotyping resources, even in the absence of existing genome assemblies. Here, we present the development of a genome-wide SNP assay for the Black Tiger shrimp (Penaeus monodon) through utilisation of a reduced-representation whole-genome genotyping approach (DArTseq).

RESULTS:

Based on a single reduced-representation library, 31,262 polymorphic SNPs were identified across 650 individuals obtained from Australian wild stocks and commercial aquaculture populations. After filtering to remove SNPs with low read depth, low MAF, low call rate, deviation from HWE, and non-Mendelian inheritance, 7542 high-quality SNPs were retained. From these, 4236 high-quality genome-wide loci were selected for baits-probe development and 4194 SNPs were included within a finalized target-capture genotype-by-sequence assay (DArTcap). This assay was designed for routine and cost effective commercial application in large scale breeding programs, and demonstrates higher confidence in genotype calls through increased call rate (from 80.2 ± 14.7 to 93.0% ± 3.5%), increased read depth (from 20.4 ± 15.6 to 80.0 ± 88.7), as well as a 3-fold reduction in cost over traditional genotype-by-sequencing approaches.

CONCLUSION:

Importantly, this assay equips the P. monodon industry with the ability to simultaneously assign parentage of communally reared animals, undertake genomic relationship analysis, manage mate pairings between cryptic family lines, as well as undertake advance studies of genome and trait architecture. Critically this assay can be cost effectively applied as P. monodon breeding programs transition to undertaking genomic selection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Penaeidae Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Penaeidae Idioma: En Ano de publicação: 2020 Tipo de documento: Article