Structure and reactivity of chlorite dismutase nitrosyls.
J Inorg Biochem
; 211: 111203, 2020 10.
Article
em En
| MEDLINE
| ID: mdl-32768737
Ferric nitrosyl ({FeNO}6) and ferrous nitrosyl ({FeNO}7) complexes of the chlorite dismutases (Cld) from Klebsiella pneumoniae and Dechloromonas aromatica have been characterized using UV-visible absorbance and Soret-excited resonance Raman spectroscopy. Both of these Clds form kinetically stable {FeNO}6 complexes and they occupy a unique region of ν(Fe-NO)/ν(N-O) correlation space for proximal histidine liganded heme proteins, characteristic of weak Fe-NO and N-O bonds. This location is attributed to admixed FeIII-NO character of the {FeNO}6 ground state. Cld {FeNO}6 complexes undergo slow reductive nitrosylation to yield {FeNO}7 complexes. The effects of proximal and distal environment on reductive nitroylsation rates for these dimeric and pentameric Clds are reported. The ν(Fe-NO) and ν(N-O) frequencies for Cld {FeNO}7 complexes reveal both six-coordinate (6c) and five-coordinate (5c) nitrosyl hemes. These 6c and 5c forms are in a pH dependent equilibrium. The 6c and 5c {FeNO}7 Cld frequencies provided positions of both Clds on their respective ν(Fe-NO) vs ν(N-O) correlation lines. The 6c {FeNO}7 complexes fall below (along the ν(Fe-NO) axis) the correlation line that reports hydrogen-bond donation to NNO, which is consistent with a relatively weak Fe-NO bond. Kinetic and spectroscopic evidence is consistent with the 5c {FeNO}7 Clds having NO coordinated on the proximal side of the heme, analogous to 5c {FeNO}7 hemes in proteins known to have NO sensing functions.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Oxirredutases
/
Compostos Férricos
/
Heme
/
Óxido Nítrico
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article