Your browser doesn't support javascript.
loading
Ultrasensitive Homogeneous Electrochemiluminescence Biosensor for a Transcription Factor Based on Target-Modulated Proximity Hybridization and Exonuclease III-Powered Recycling Amplification.
Li, Dan; Li, Ya; Luo, Fang; Qiu, Bin; Lin, Zhenyu.
Afiliação
  • Li D; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Li Y; Department of Ultrasound, Fourth People's Hospital of Taizhou City, Jianshu, 225300, China.
  • Luo F; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Qiu B; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Lin Z; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
Anal Chem ; 92(18): 12686-12692, 2020 09 15.
Article em En | MEDLINE | ID: mdl-32786454
ABSTRACT
Herein an ultrasensitive homogeneous ECL biosensor has been developed for TF NF-κB p50 through target-modulated proximity hybridization coupling with exonuclease III (Exo III)-powered recycling amplification. The ECL reagent (Ru(bpy)32+)-labeled hairpin DNA (HP-Rul) contains many negatively charged phosphates on the DNA chain, which cannot diffuse easily toward the negatively charged ITO electrode surface because of the large electrostatic repulsion. So a weak ECL signal can be detected. A proximity complex containing partial double strand DNA (dsDNA, as the binding site) and two hanging single-stranded DNA (ssDNA) fragments has been designed. The binding of NF-κB p50 to dsDNA effectively protects the proximity complex from digestion, forming a stable TF-DNA complex. ssDNA hybridizes with HP-Rul through proximity hybridization and hence forms a T-shape structure. This structure can be recognized by Exo III, thereby initiating the digestion process and results in the release of Ru(bpy)32+-labeled mononucleotide fragments (MFs-Rul). Meanwhile, another HP-Rul is opened and hence triggers the next cycle of hybridization and digestion process; thus, multiple MFs-Rul are generated. MFs-Rul diffuse easily to the ITO electrode because of small electrostatic repulsion, resulting in an evident signal enhancement. Under the optimal conditions, the ΔECL has a linear relationship with the logarithm of NF-κB p50 concentration ranging from 0.1 to 500 pM. The detection limit is 29 fM (S/N = 3). The sensing platform has been successfully applied to detect NF-κB p50 in cell lysates and also demonstrated to work well for NF-κB p50 inhibitor detection, exhibiting great potential in the diagnosis of disease and drug discovery.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Técnicas de Amplificação de Ácido Nucleico / Subunidade p50 de NF-kappa B / Exodesoxirribonucleases Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Técnicas de Amplificação de Ácido Nucleico / Subunidade p50 de NF-kappa B / Exodesoxirribonucleases Idioma: En Ano de publicação: 2020 Tipo de documento: Article