Your browser doesn't support javascript.
loading
Calcium-chloride-assisted approach towards green and sustainable synthesis of hierarchical porous carbon microspheres for high-performance supercapacitive energy storage.
Yuan, Gang; Guan, Kaixiu; Hu, Hang; Lei, Bingfu; Xiao, Yong; Dong, Hanwu; Liang, Yeru; Liu, Yingliang; Zheng, Mingtao.
Afiliação
  • Yuan G; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
  • Guan K; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
  • Hu H; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingn
  • Lei B; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingn
  • Xiao Y; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingn
  • Dong H; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingn
  • Liang Y; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingn
  • Liu Y; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingn
  • Zheng M; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingn
J Colloid Interface Sci ; 582(Pt A): 159-166, 2021 Jan 15.
Article em En | MEDLINE | ID: mdl-32814222
ABSTRACT
Spherical carbon materials exhibit great competence as electrode materials for electrochemical energy storage, owing to the high packing density, low surface to volume ratio, and excellent structure stability. How to utilize renewable biomass precursor by green and efficient strategy to fabricate porous carbon microspheres remains a great challenge. Herein, we report a KOH-free and sustainable strategy to fabricate porous carbon microspheres derived from cassava starch with high specific surface area, high yield, and hierarchical structure, in which potassium oxalate monohydrate (K2C2O4·H2O) and calcium chloride (CaCl2) are employed as novel activator. The green CaCl2 activator is crucial to regulate the graphitization degree, specific surface area, and porosity of the carbon microspheres for improving the electrochemical performance. The as-prepared carbon microspheres exhibit high specific surface area (1668 m2 g-1), wide pore size distribution (0.5-60 nm), high carbon content (95%), and exfoliated surface layer. The hierarchical porous carbon microspheres show high specific and areal capacitance (17.1 µF cm-2), superior rate performance, and impressive cycling stability. Moreover, the carbon microspheres based symmetric supercapacitor exhibits high capacitance and excellent cycling performance (100% after 20 000 cycles at a current density of 5 A g-1). This green and novel approach holds great promise to realize low-cost, high-efficient and scalable of renewable cassava starch-derived carbon materials for advanced supercapacitive energy storage applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article