Your browser doesn't support javascript.
loading
GTree: an Open-source Tool for Dense Reconstruction of Brain-wide Neuronal Population.
Zhou, Hang; Li, Shiwei; Li, Anan; Huang, Qing; Xiong, Feng; Li, Ning; Han, Jiacheng; Kang, Hongtao; Chen, Yijun; Li, Yun; Lin, Huimin; Zhang, Yu-Hui; Lv, Xiaohua; Liu, Xiuli; Gong, Hui; Luo, Qingming; Zeng, Shaoqun; Quan, Tingwei.
Afiliação
  • Zhou H; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Li S; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Li A; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Huang Q; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Xiong F; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Li N; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Han J; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Kang H; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Chen Y; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Li Y; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Lin H; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Zhang YH; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Lv X; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Liu X; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Gong H; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Luo Q; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Zeng S; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Hubei, Wuhan, 430074, China.
  • Quan T; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China.
Neuroinformatics ; 19(2): 305-317, 2021 04.
Article em En | MEDLINE | ID: mdl-32844332
ABSTRACT
Recent technological advancements have facilitated the imaging of specific neuronal populations at the single-axon level across the mouse brain. However, the digital reconstruction of neurons from a large dataset requires months of manual effort using the currently available software. In this study, we develop an open-source software called GTree (global tree reconstruction system) to overcome the above-mentioned problem. GTree offers an error-screening system for the fast localization of submicron errors in densely packed neurites and along with long projections across the whole brain, thus achieving reconstruction close to the ground truth. Moreover, GTree integrates a series of our previous algorithms to significantly reduce manual interference and achieve high-level automation. When applied to an entire mouse brain dataset, GTree is shown to be five times faster than widely used commercial software. Finally, using GTree, we demonstrate the reconstruction of 35 long-projection neurons around one injection site of a mouse brain. GTree is also applicable to large datasets (10 TB or higher) from various light microscopes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Encéfalo / Imageamento Tridimensional / Neurônios Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Encéfalo / Imageamento Tridimensional / Neurônios Idioma: En Ano de publicação: 2021 Tipo de documento: Article