Your browser doesn't support javascript.
loading
Pepsin exposure in a non-acidic environment upregulates mucin 5AC (MUC5AC) expression via matrix metalloproteinase 9 (MMP9)/nuclear factor κB (NF-κB) in human airway epithelial cells.
Choi, Yoon Seok; Na, Hyung Gyun; Bae, Chang Hoon; Song, Si-Youn; Kim, Yong-Dae.
Afiliação
  • Choi YS; Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
  • Na HG; Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
  • Bae CH; Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
  • Song SY; Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
  • Kim YD; Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
Int Forum Allergy Rhinol ; 11(5): 894-901, 2021 05.
Article em En | MEDLINE | ID: mdl-32846027
BACKGROUND: Gastric reflux (GR) is a backflow of gastric content to the aerodigestive tract. GR was previously found to be associated with inflammatory airway diseases and a potential cause of airway remodeling. Chronic exposure to gastric content may induce damage from nose to lung, because digestive enzymes and acidity are toxic to airway epithelial cells. Recently, the toxicity of pepsin in a non-acidic environment was found to increase proinflammatory cytokines and receptors in the epithelium of the aerodigestive tract. However, the effect of pepsin in non-acidic conditions on mucin expression has not been investigated in human airway epithelial cells. The purpose of this study was to evaluate the effect of pepsin on mucin 5AC (MUC5AC) expression in upper and lower airway epithelial cells as an important potential factor of non-acidic GR-related airway inflammation. METHODS: In NCI-H292 cells and human nasal epithelial cells (HNEpCs), the effects and signaling pathways of pepsin on MUC5AC expression were examined using reverse-transcription polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, zymography, Western blot, and immunofluorescence staining. RESULTS: Pepsin increased MUC5AC expression in non-acidic condition of NCI-H292 cells and HNEpCs. Further, pepsin activated matrix metalloproteinase 9 (MMP9) and phosphorylated nuclear factor κB (NF-κB). Moreover, inhibitors of MMP9 and NF-κB significantly attenuated pepsin-induced MUC5AC expression, and the knockdown of NF-κB by small interfering RNA (siRNA) significantly blocked pepsin-induced MUC5AC expression in human airway epithelial cells. CONCLUSION: These findings suggest that pepsin increased MUC5AC expression in non-acidic conditions via the activation of MMP9 and NF-κB in human airway epithelial cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Metaloproteinase 9 da Matriz / Mucina-5AC Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Metaloproteinase 9 da Matriz / Mucina-5AC Idioma: En Ano de publicação: 2021 Tipo de documento: Article