Transite: A Computational Motif-Based Analysis Platform That Identifies RNA-Binding Proteins Modulating Changes in Gene Expression.
Cell Rep
; 32(8): 108064, 2020 08 25.
Article
em En
| MEDLINE
| ID: mdl-32846122
RNA-binding proteins (RBPs) play critical roles in regulating gene expression by modulating splicing, RNA stability, and protein translation. Stimulus-induced alterations in RBP function contribute to global changes in gene expression, but identifying which RBPs are responsible for the observed changes remains an unmet need. Here, we present Transite, a computational approach that systematically infers RBPs influencing gene expression through changes in RNA stability and degradation. As a proof of principle, we apply Transite to RNA expression data from human patients with non-small-cell lung cancer whose tumors were sampled at diagnosis or after recurrence following treatment with platinum-based chemotherapy. Transite implicates known RBP regulators of the DNA damage response and identifies hnRNPC as a new modulator of chemotherapeutic resistance, which we subsequently validated experimentally. Transite serves as a framework for the identification of RBPs that drive cell-state transitions and adds additional value to the vast collection of publicly available gene expression datasets.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Dano ao DNA
/
Expressão Gênica
/
Proteínas de Ligação a RNA
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article