Your browser doesn't support javascript.
loading
Tumor organoid models in precision medicine and investigating cancer-stromal interactions.
Xu, Ren; Zhou, Xiaotao; Wang, Shike; Trinkle, Christine.
Afiliação
  • Xu R; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA. Electronic address: ren.xu2010@uky.edu.
  • Zhou X; Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA.
  • Wang S; Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA.
  • Trinkle C; Department of Mechanical Engineering, University of Kentucky, Lexington, KY, 40506, USA.
Pharmacol Ther ; 218: 107668, 2021 02.
Article em En | MEDLINE | ID: mdl-32853629
ABSTRACT
Tumor development and progression require chemical and mechanical cues derived from cellular and non-cellular components in the tumor microenvironment, including the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), endothelial cells, and immune cells. Therefore, it is crucial to develop tissue culture models that can mimic in vivo cancer cell-ECM and cancer-stromal cell interactions. Three-dimensional (3D) tumor culture models have been widely utilized to study cancer development and progression. A recent advance in 3D culture is the development of patient-derived tumor organoid (PDO) models from primary human cancer tissue. PDOs maintain the heterogeneity of the primary tumor, which makes them more relevant for identifying therapeutic targets and verifying drug response. Other significant advances include development of 3D co-culture assays to investigate cell-cell interactions and tissue/organ morphogenesis, and microfluidic technology that can be integrated into 3D culture to mimic vasculature and blood flow. These advances offer spatial and temporal insights into cancer cell-stromal interactions and represent novel techniques to study tumor progression and drug response. Here, we summarize the recent progress in 3D culture and tumor organoid models, and discuss future directions and the potential of utilizing these models to study cancer-stromal interactions and direct personalized treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medicina de Precisão / Neoplasias Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medicina de Precisão / Neoplasias Idioma: En Ano de publicação: 2021 Tipo de documento: Article