Your browser doesn't support javascript.
loading
In Vitro Selective Growth-Inhibitory Activities of Phytochemicals, Synthetic Phytochemical Analogs, and Antibiotics against Diarrheagenic/Probiotic Bacteria and Cancer/Normal Intestinal Cells.
Kudera, Tomas; Doskocil, Ivo; Salmonova, Hana; Petrtyl, Miloslav; Skrivanova, Eva; Kokoska, Ladislav.
Afiliação
  • Kudera T; Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Praha-Suchdol, Czech Republic.
  • Doskocil I; Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Praha-Suchdol, Czech Republic.
  • Salmonova H; Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Praha-Suchdol, Czech Republic.
  • Petrtyl M; Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Praha-Suchdol, Czech Republic.
  • Skrivanova E; Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Praha-Suchdol, Czech Republic.
  • Kokoska L; Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Praha-Suchdol, Czech Republic.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 03.
Article em En | MEDLINE | ID: mdl-32899218
ABSTRACT
A desirable attribute of novel antimicrobial agents for bacterial diarrhea is decreased toxicity toward host intestinal microbiota. In addition, gut dysbiosis is associated with an increased risk of developing intestinal cancer. In this study, the selective growth-inhibitory activities of ten phytochemicals and their synthetic analogs (berberine, bismuth subsalicylate, ferron, 8-hydroxyquinoline, chloroxine, nitroxoline, salicylic acid, sanguinarine, tannic acid, and zinc pyrithione), as well as those of six commercial antibiotics (ceftriaxone, ciprofloxacin, chloramphenicol, metronidazole, tetracycline, and vancomycin) against 21 intestinal pathogenic/probiotic (e.g., Salmonella spp. and bifidobacteria) bacterial strains and three intestinal cancer/normal (Caco-2, HT29, and FHs 74 Int) cell lines were examined in vitro using the broth microdilution method and thiazolyl blue tetrazolium bromide assay. Chloroxine, ciprofloxacin, nitroxoline, tetracycline, and zinc pyrithione exhibited the most potent selective growth-inhibitory activity against pathogens, whereas 8-hydroxyquinoline, chloroxine, nitroxoline, sanguinarine, and zinc pyrithione exhibited the highest cytotoxic activity against cancer cells. None of the tested antibiotics were cytotoxic to normal cells, whereas 8-hydroxyquinoline and sanguinarine exhibited selective antiproliferative activity against cancer cells. These findings indicate that 8-hydroxyquinoline alkaloids and metal-pyridine derivative complexes are chemical structures derived from plants with potential bioactive properties in terms of selective antibacterial and anticancer activities against diarrheagenic bacteria and intestinal cancer cells.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article