Your browser doesn't support javascript.
loading
Thermal Transport across Ion-Cut Monocrystalline ß-Ga2O3 Thin Films and Bonded ß-Ga2O3-SiC Interfaces.
Cheng, Zhe; Mu, Fengwen; You, Tiangui; Xu, Wenhui; Shi, Jingjing; Liao, Michael E; Wang, Yekan; Huynh, Kenny; Suga, Tadatomo; Goorsky, Mark S; Ou, Xin; Graham, Samuel.
Afiliação
  • Cheng Z; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
  • Mu F; Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051, Japan.
  • You T; Collaborative Research Center, Meisei University, Hino-shi, Tokyo 191-8506, Japan.
  • Xu W; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
  • Shi J; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
  • Liao ME; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
  • Wang Y; Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Huynh K; Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Suga T; Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Goorsky MS; Collaborative Research Center, Meisei University, Hino-shi, Tokyo 191-8506, Japan.
  • Ou X; Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Graham S; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
ACS Appl Mater Interfaces ; 12(40): 44943-44951, 2020 Oct 07.
Article em En | MEDLINE | ID: mdl-32909730
ABSTRACT
The ultrawide band gap, high breakdown electric field, and large-area affordable substrates make ß-Ga2O3 promising for applications of next-generation power electronics, while its thermal conductivity is at least 1 order of magnitude lower than other wide/ultrawide band gap semiconductors. To avoid the degradation of device performance and reliability induced by the localized Joule-heating, proper thermal management strategies are essential, especially for high-power high-frequency applications. This work reports a scalable thermal management strategy to heterogeneously integrate wafer-scale monocrystalline ß-Ga2O3 thin films on high thermal conductivity SiC substrates by the ion-cutting technique and room-temperature surface-activated bonding technique. The thermal boundary conductance (TBC) of the ß-Ga2O3-SiC interfaces and thermal conductivity of the ß-Ga2O3 thin films were measured by time-domain thermoreflectance to evaluate the effects of interlayer thickness and thermal annealing. Materials characterizations were performed to understand the mechanisms of thermal transport in these structures. The results show that the ß-Ga2O3-SiC TBC values are reasonably high and increase with decreasing interlayer thickness. The ß-Ga2O3 thermal conductivity increases more than twice after annealing at 800 °C because of the removal of implantation-induced strain in the films. A Callaway model is built to understand the measured thermal conductivity. Small spot-to-spot variations of both TBC and Ga2O3 thermal conductivity confirm the uniformity and high quality of the bonding and exfoliation. Our work paves the way for thermal management of power electronics and provides a platform for ß-Ga2O3-related semiconductor devices with excellent thermal dissipation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article