Your browser doesn't support javascript.
loading
A tandem-repeat galectin-4 from Nile tilapia (Oreochromis niloticus) is involved in immune response to bacterial infection via mediating pathogen recognition and opsonization.
Niu, Jinzhong; Liu, Xinchao; Zhang, Zhiqiang; Huang, Yu; Tang, Jufen; Wang, Bei; Lu, Yishan; Cai, Jia; Jian, Jichang.
Afiliação
  • Niu J; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Liu X; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Zhang Z; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Huang Y; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Tang J; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Wang B; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Lu Y; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Cai J; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
  • Jian J; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong
Mol Immunol ; 127: 67-77, 2020 11.
Article em En | MEDLINE | ID: mdl-32927166
ABSTRACT
Galectins are the family of carbohydrate-binding proteins that participate in host-pathogen interaction. In this study, a galectin-4 homolog (OnGal-4) from Nile tilapia (Oreochromis niloticus) was characterized. The open reading frame of OnGal-4 was 1194 bp, encoding a peptide of 397 amino including two CRD regions and two carbohydrate recognition sites. OnGal-4 mRNA was expressed in all examined tissues with the highest level in spleen. After Streptococcus agalactiae (S.agalactiae) challenge, the OnGal-4 expression was up-regulated in the spleen, head kidney, brain, and monocytes/macrophages (Mo/MΦ). The in vitro experiments showed that recombinant OnGal-4 (rOnGal-4) protein could bind and agglutinate S.agalactiae and A.hydrophila. Also, rOnGal-4 could induce cytokines expressions and increased bactericidal activity of Mo/MΦ. Further in vivo analysis indicated that OnGal-4 overexpression could protect O.niloticus from S.agalactiae infection through modulating inflammation response. Our study suggested that OnGal-4 could improve immune response against bacterial infection by mediating pathogen recognition and opsonization.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções Bacterianas / Proteínas Opsonizantes / Ciclídeos / Galectina 4 / Interações Hospedeiro-Patógeno / Imunidade Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções Bacterianas / Proteínas Opsonizantes / Ciclídeos / Galectina 4 / Interações Hospedeiro-Patógeno / Imunidade Idioma: En Ano de publicação: 2020 Tipo de documento: Article