Your browser doesn't support javascript.
loading
Atomic Force Microscope Study of Ag-Conduct Polymer Hybrid Films: Evidence for Light-Induced Charge Separation.
Wu, Yinghui; Wang, Dong; Liu, Jinyuan; Cai, Houzhi; Zhang, Yueqiang.
Afiliação
  • Wu Y; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Wang D; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Liu J; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Cai H; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Zhang Y; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Nanomaterials (Basel) ; 10(9)2020 Sep 12.
Article em En | MEDLINE | ID: mdl-32932650
ABSTRACT
Scanning Kelvin probe microscopy (SKPM), electrostatic force microscopy (EFM) are used to study the microscopic processes of the photo-induced charge separation at the interface of Ag and conductive polymers, i.e., poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and poly(3-hexylthiophene-2,5-diyl) (P3HT). They are also widely used in order to directly observe the charge distribution and dynamic changes at the interfaces in nanostructures, owing to their high sensitivity. Using SKPM, it is proved that the charge of the photo-induced polymer PCPDTBT is transferred to Ag nanoparticles (NPs). The surface charge of the Ag-induced NPs is quantified while using EFM, and it is determined that the charge is injected into the polymer P3HT from the Ag NPs. We expect that this technology will provide guidance to facilitate the separation and transfer of the interfacial charges in the composite material systems and it will be applicable to various photovoltaic material systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article