Your browser doesn't support javascript.
loading
Serum Neurofilament Light Chain Levels are Associated with Lower Thalamic Perfusion in Multiple Sclerosis.
Jakimovski, Dejan; Bergsland, Niels; Dwyer, Michael G; Ramasamy, Deepa P; Ramanathan, Murali; Weinstock-Guttman, Bianca; Zivadinov, Robert.
Afiliação
  • Jakimovski D; Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
  • Bergsland N; Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
  • Dwyer MG; IRCCS, Fondazione Don Carlo Gnocchi ONLUS, 20121 Milan, Italy.
  • Ramasamy DP; Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
  • Ramanathan M; Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
  • Weinstock-Guttman B; School of Pharmacy, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
  • Zivadinov R; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
Diagnostics (Basel) ; 10(9)2020 Sep 11.
Article em En | MEDLINE | ID: mdl-32932824
Both perfusion-weighted imaging (PWI) measures and serum neurofilament light (sNfL) chain levels have been independently associated with disability in multiple sclerosis (MS) patients. This study aimed to determine whether these measures are correlated to each other or independently describe different MS processes. For this purpose, 3T MRI dynamic susceptibility contrast (DSC)-PWI and single-molecule assay (Simoa)-based sNfL methods were utilized when investigating 86 MS patients. The perfusion measures of mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF) were derived for the normal-appearing whole brain (NAWB), the normal-appearing white matter (NAWM), the gray matter (GM), the deep GM (DGM), and the thalamus. The normalized CBV and CBF (nCBV and nCBV) were calculated by dividing by the corresponding NAWM measure. Age- and sex-adjusted linear regression models were used to determine associations between the DSC-PWI and sNfL results. False discovery rate (FDR)-adjusted p-values < 0.05 were considered statistically significant. A greater age and thalamic MTT were independently associated with higher sNfL levels (p < 0.001 and p = 0.011) and explained 36.9% of sNfL level variance. NAWM MTT association with sNfL levels did not survive the FDR correction. In similar models, a lower thalamic nCBF and nCBV were both associated with greater sNfL levels (p < 0.001 and p = 0.022), explaining 37.8% and 44.7% of the variance, respectively. In conclusion, higher sNfL levels were associated with lower thalamic perfusion.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article