Your browser doesn't support javascript.
loading
A large kinetic isotope effect in the reaction of ascorbic acid with 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO˙) in aqueous buffer solutions.
Nakanishi, Ikuo; Shoji, Yoshimi; Ohkubo, Kei; Ozawa, Toshihiko; Matsumoto, Ken-Ichiro; Fukuzumi, Shunichi.
Afiliação
  • Nakanishi I; Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan. nakanishi.ikuo@qst.go.jp.
Chem Commun (Camb) ; 56(77): 11505-11507, 2020 Sep 29.
Article em En | MEDLINE | ID: mdl-32945829
A large kinetic isotope effect (KIE, kH/kD) of 12.8 was observed for the hydrogen-transfer reaction from ascorbic acid to 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO˙) in a phosphate buffer solution (0.05 M, pH/pD 7.0) at 298 K. The isotopic difference in the activation energies (6.8 kJ mol-1) determined from the temperature dependence of the KIE suggests that quantum mechanical tunneling may partly play a role in the reaction, although the isotopic ratio of the Arrhenius prefactor (AH/AD = 0.86) is within the semiclassical limits.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article