Your browser doesn't support javascript.
loading
Identifying Topological Phase Transitions in Experiments Using Manifold Learning.
Lustig, Eran; Yair, Or; Talmon, Ronen; Segev, Mordechai.
Afiliação
  • Lustig E; Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • Yair O; Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • Talmon R; Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • Segev M; Technion-Israel Institute of Technology, Haifa 32000, Israel.
Phys Rev Lett ; 125(12): 127401, 2020 Sep 18.
Article em En | MEDLINE | ID: mdl-33016717
We demonstrate the identification of topological phase transitions from experimental data using diffusion maps: a nonlocal unsupervised machine learning method. We analyze experimental data from an optical system undergoing a topological phase transition and demonstrate the ability of this approach to identify topological phase transitions even when the data originates from a small part of the system, and does not even include edge states.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article