Your browser doesn't support javascript.
loading
Detection of Filamentous Microorganisms in Fluorescence Microscopy Images.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1895-1898, 2020 07.
Article em En | MEDLINE | ID: mdl-33018371
We present a robust, precise image binarization technique for automatically detecting filamentous microorganisms from digital fluorescence microscopy scans, with application to finding the pseudohyphae that are fungal pathogens responsible for Candida vaginitis. This method employs a hybrid constant false positive rate processor that integrates cell average and order statistic detectors, with linear windows at multiple orientation angles. The hypothesis test rule incorporates elongation enhancement and region of interest masking. Our approach achieves the adaptivity to local noise and all possible object orientations. The designed processor is evaluated theoretically and experimentally using clinical images. Successful detection results are demonstrated.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vaginite Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vaginite Idioma: En Ano de publicação: 2020 Tipo de documento: Article