Your browser doesn't support javascript.
loading
Controlling gully- and revegetation-induced dried soil layers across a slope-gully system.
Zhang, Chencheng; Wang, Yunqiang; Shao, Ming'an.
Afiliação
  • Zhang C; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi 710061, China.
  • Wang Y; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi 710061, China; Interdisciplinary Research Center of Earth Science Frontier, Beijing Normal University, Beijing 100875, China; Department of Earth and Environmental Sciences, Xi'an Jiaotong University, Xi'an 710049, China. Electronic address: wangyq@ieecas.cn.
  • Shao M; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
Sci Total Environ ; 755(Pt 2): 142444, 2021 Feb 10.
Article em En | MEDLINE | ID: mdl-33059149
The introduction of exotic plants and improper management strategies with regard to plant species can change the soil-water balance of deep soils, which in turn results in the formation of a dried soil layer (DSL) within the soil profile. The Loess Plateau (LP) of China has a complex terrain; however, only a few studies have evaluated the effects of the gully-induced DSL patterns, especially in hilly and gully regions of the northern LP. In this study, we collected soil-water content data to a depth of 5 m at 40 sampling sites in a slope-gully system to investigate and characterize DSLs and their spatial patterns. Results show that the DSL indices vary greatly in different slope positions. The thickness of DSLs (DSLT) and quantitative index (QI) in the gully were significantly (p < 0.05) higher than those in the non-gully areas. The relative contribution of soil properties was higher than those of terrain factors in the gully, whereas the contribution of terrain factors was higher than those of soil properties under shrubland. Gullies contributed to the complex spatial DSL patterns in the slope-gully system. Partial least squares regression (PLSR) was used to detect the relative significance of 10 selected environmental factors that affect spatial DSL patterns. Variable importance in projection (VIP) demonstrated that soil properties, especially Clay and Silt content, significantly influenced the DSL formation depth (DSLFD), DSLT, and QI. Land-use and slope position were the most important factors that influenced the mean soil-water content (SWC) within DSLs (DSL-SWC), which exhibited the highest VIP values. PLSR models simulated DSL indices accurately in DSL-SWC; the values for variation in response (R2) and goodness of prediction (Q2) were 0.94 and 0.92, respectively. Therefore, our findings provide a helpful base reference for DSL management and reclamation of hill and gully regions of the LP.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article