Your browser doesn't support javascript.
loading
Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI.
Christiaens, Daan; Cordero-Grande, Lucilio; Pietsch, Maximilian; Hutter, Jana; Price, Anthony N; Hughes, Emer J; Vecchiato, Katy; Deprez, Maria; Edwards, A David; Hajnal, Joseph V; Tournier, J-Donald.
Afiliação
  • Christiaens D; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering, ESAT/PSI,
  • Cordero-Grande L; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Image Technologies, ETSI Telecomunica
  • Pietsch M; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Hutter J; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Price AN; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Hughes EJ; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Vecchiato K; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Deprez M; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Edwards AD; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
  • Hajnal JV; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Tournier JD; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
Neuroimage ; 225: 117437, 2021 01 15.
Article em En | MEDLINE | ID: mdl-33068713
ABSTRACT
Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need to be aligned within and across diffusion-weighted contrasts. Here, we develop a reconstruction method for scattered slice multi-shell high angular resolution diffusion imaging (HARDI) data, jointly estimating an uncorrupted data representation and motion parameters at the slice or multiband excitation level. The reconstruction relies on data-driven representation of multi-shell HARDI data using a bespoke spherical harmonics and radial decomposition (SHARD), which avoids imposing model assumptions, thus facilitating to compare various microstructure imaging methods in the reconstructed output. Furthermore, the proposed framework integrates slice-level outlier rejection, distortion correction, and slice profile correction. We evaluate the method in the neonatal cohort of the developing Human Connectome Project (650 scans). Validation experiments demonstrate accurate slice-level motion correction across the age range and across the range of motion in the population. Results in the neonatal data show successful reconstruction even in severely motion-corrupted subjects. In addition, we illustrate how local tissue modelling can extract advanced microstructure features such as orientation distribution functions from the motion-corrected reconstructions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Imagem de Difusão por Ressonância Magnética / Movimento Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Imagem de Difusão por Ressonância Magnética / Movimento Idioma: En Ano de publicação: 2021 Tipo de documento: Article