Your browser doesn't support javascript.
loading
Novel biomimetic nanostructured lipid carriers for cancer therapy: preparation, characterization, and in vitro/in vivo evaluation.
Zhou, Jianwen; Guo, Biru; Zhu, Wenquan; Sui, Xiaoyu; Ma, Xiaoxing; Qian, Jiayi; Cao, Lixin; Han, Cuiyan.
Afiliação
  • Zhou J; Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China.
  • Guo B; Institute of Medicine, Heilongjiang Zbd Pharmaceutical Co., Ltd, Harbin, China.
  • Zhu W; School of Pharmacy, Qiqihar Medical University, Qiqihar, China.
  • Sui X; School of Pharmacy, Qiqihar Medical University, Qiqihar, China.
  • Ma X; School of Pharmacy, Qiqihar Medical University, Qiqihar, China.
  • Qian J; School of Pharmacy, Qiqihar Medical University, Qiqihar, China.
  • Cao L; Department of Orthopedics, the First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
  • Han C; School of Pharmacy, Qiqihar Medical University, Qiqihar, China.
Pharm Dev Technol ; 26(1): 81-91, 2021 Jan.
Article em En | MEDLINE | ID: mdl-33070668
ABSTRACT
Nanostructured lipid carriers (NLC) have become a research hotspot, wherein cancer-targeting effects are enhanced and side effects of chemotherapy are overcome. Usually, accelerated blood clearance (ABC) occurs after repeated injections, without changing the immunologic profile, despite PEGylation which prolongs the circulation function. To overcome these problems, we designed a red blood cell-membrane-coated NLC (RBCm-NLC), which was round-like, with a particle size of 60.33 ± 3.04 nm and a core-shell structure. Its stability was good, the drug paclitaxel (PTX) release from RBCm-PTX-NLC was less than 30% at pH7.4 and pH6.5, and the integrity of RBC membrane surface protein was maintained before and after preparation. Additionally, in vitro assays showed that, with the RBCm coating, the cellular uptake of the NLC by cancer cells was significantly enhanced. RBCm-NLC can avoid recognition by macrophage cells and prolong circulation time in vivo. In S180 tumor-bearing mice, the DiR-labeled RBCm-NLC group showed a stronger fluorescence signal and longer retention in tumor tissues, indicating a prompt tumor-targeting effect and extended blood circulation. Importantly, RBCm-PTX-NLC enhanced the antitumor effect and extended the survival period significantly in vivo. In summary, biomimetic NLC offered a novel strategy for drug delivery in cancer therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Biomimética / Materiais Biomiméticos / Nanoestruturas / Antineoplásicos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Biomimética / Materiais Biomiméticos / Nanoestruturas / Antineoplásicos Idioma: En Ano de publicação: 2021 Tipo de documento: Article