Your browser doesn't support javascript.
loading
Detection of ERBB2 amplification in uterine serous carcinoma by next-generation sequencing: an approach highly concordant with standard assays.
Robinson, Carrie L; Harrison, Beth T; Ligon, Azra H; Dong, Fei; Maffeis, Valeria; Matulonis, Ursula; Nucci, Marisa R; Kolin, David L.
Afiliação
  • Robinson CL; Naval Medical Center San Diego, San Diego, CA, USA.
  • Harrison BT; Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Ligon AH; Department of Pathology, Division of Clinical Cytogenetics, Brigham and Women's Hospital, Boston, MA, USA.
  • Dong F; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Maffeis V; Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy.
  • Matulonis U; Dana-Farber Cancer Institute, Boston, MA, USA.
  • Nucci MR; Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  • Kolin DL; Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA. dkolin@bwh.harvard.edu.
Mod Pathol ; 34(3): 603-612, 2021 03.
Article em En | MEDLINE | ID: mdl-33077919
ABSTRACT
Uterine serous carcinoma is an aggressive subtype of endometrial cancer that accounts for fewer than 10% of endometrial carcinomas but is responsible for about half of deaths. A subset of cases has HER2 overexpression secondary to ERBB2 gene amplification, and these patients may benefit from anti-HER2 therapies, such as trastuzumab. HER2 protein overexpression is currently assessed by immunohistochemistry (IHC) and ERBB2 gene amplification by fluorescence in situ hybridization (FISH). Targeted next-generation sequencing (NGS) is increasingly used to routinely identify predictive and prognostic molecular abnormalities in endometrial carcinoma. To investigate the ability of a targeted NGS panel to detect ERBB2 amplification, we identified cases of uterine serous carcinoma (n = 93) and compared HER2 expression by IHC and copy number assessed by FISH with copy number status assessed by NGS. ERBB2 copy number status using a combination of IHC and FISH was interpreted using the 2018 ASCO/CAP guidelines for breast carcinoma. ERBB2 amplification by NGS was determined by the relative number of reads mapping to ERBB2 in tumor DNA compared to control nonneoplastic DNA. Cases with copy number ≥6 were considered amplified and copy number <6 were non-amplified. By IHC, 70 specimens were classified as negative (0 or 1+), 19 were classified as equivocal (2+), and 4 were classified as positive (3+). Using combined IHC/FISH, ERBB2 amplification was observed in 8 of 93 cases (9%). NGS identified the same 8 cases with copy number ≥6; all 85 others had copy number <6. In this series, NGS had 100% concordance with combined IHC/FISH in identifying ERBB2 amplification. NGS is highly accurate in detecting ERBB2 amplification in uterine serous carcinoma and provides an alternative to measurement by IHC and FISH.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma / Biomarcadores Tumorais / Amplificação de Genes / Neoplasias do Endométrio / Neoplasias Císticas, Mucinosas e Serosas / Receptor ErbB-2 / Sequenciamento de Nucleotídeos em Larga Escala Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma / Biomarcadores Tumorais / Amplificação de Genes / Neoplasias do Endométrio / Neoplasias Císticas, Mucinosas e Serosas / Receptor ErbB-2 / Sequenciamento de Nucleotídeos em Larga Escala Idioma: En Ano de publicação: 2021 Tipo de documento: Article