Your browser doesn't support javascript.
loading
Chemical Imaging of Retinal Pigment Epithelium in Frozen Sections of Zebrafish Larvae Using ToF-SIMS.
Van Nuffel, Sebastiaan; Ang, Khai C; Lin, Alex Y; Cheng, Keith C.
Afiliação
  • Van Nuffel S; Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Ang KC; The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.
  • Lin AY; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.
  • Cheng KC; Penn State Zebrafish Functional Genomics Core, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.
J Am Soc Mass Spectrom ; 32(1): 255-261, 2021 Jan 06.
Article em En | MEDLINE | ID: mdl-33112610
ABSTRACT
Variants of the SLC24A5 gene, which encodes a putative potassium-dependent sodium-calcium exchanger (NCKX5) that most likely resides in the melanosome or its precursor, affect pigmentation in both humans and zebrafish (Danio rerio). This finding suggests that genetic variations influencing human skin pigmentation alter melanosome biogenesis via ionic changes. Gaining an understanding of how changes in the ionic environment of organelles impact melanosome morphogenesis and pigmentation will require a spatially resolved way to characterize the chemical environment of melanosomes in pigmented tissue such as retinal pigment epithelium (RPE). The imaging mass spectrometry technique most suited for this type of cell and tissue analysis is time-of-flight secondary ion mass spectrometry (ToF-SIMS) because it is able to detect many biochemical species with high sensitivity and with submicron spatial resolution. Here, we describe chemical imaging of the RPE in frozen-hydrated sections of larval zebrafish using cryo-ToF-SIMS. To facilitate the data interpretation, positive and negative polarity ToF-SIMS image data were transformed into a single hyperspectral data set and analyzed using principal component analysis. The combination of a novel protocol and the use of multivariate data analysis allowed us to discover new marker ions that are attributable to leucodopachrome, a metabolite specific to the biosynthesis of eumelanin. The described methodology may be adapted for the investigation of other classes of molecules in frozen tissues from zebrafish and other organisms.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectrometria de Massa de Íon Secundário / Epitélio Pigmentado da Retina / Imagem Molecular Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectrometria de Massa de Íon Secundário / Epitélio Pigmentado da Retina / Imagem Molecular Idioma: En Ano de publicação: 2021 Tipo de documento: Article