Your browser doesn't support javascript.
loading
Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors.
Abdel-Halim, Mohammad; Tinsley, Heather; Keeton, Adam B; Weam, Mohammed; Atta, Noha H; Hammam, Mennatallah A; Hefnawy, Amr; Hartmann, Rolf W; Engel, Matthias; Piazza, Gary A; Abadi, Ashraf H.
Afiliação
  • Abdel-Halim M; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt. Electronic address: mohammad.abdel-halim@guc.edu.eg.
  • Tinsley H; Department of Biology, University of Montevallo.
  • Keeton AB; Department of Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA.
  • Weam M; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
  • Atta NH; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
  • Hammam MA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
  • Hefnawy A; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
  • Hartmann RW; Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
  • Engel M; Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
  • Piazza GA; Department of Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA.
  • Abadi AH; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt. Electronic address: ashraf.abadi@guc.edu.eg.
Bioorg Chem ; 104: 104322, 2020 11.
Article em En | MEDLINE | ID: mdl-33142429
ABSTRACT
Celecoxib, is a selective cyclooxygenase-2 (COX2) inhibitor with a 1,5-diaryl pyrazole scaffold. Celecoxib has a better safety profile compared to other COX2 inhibitors having side effects of systemic hypertension and thromboembolic complications. This may be partly attributed to an off-target activity involving phosphodiesterase 5 (PDE5) inhibition and the potentiation of NO/cGMP signalling allowing coronary vasodilation and aortic relaxation. Inspired by the structure of celecoxib, we synthesized a chemically diverse series of compounds containing a 1,3,5-trisubstituted pyrazoline scaffold to improve PDE5 inhibitory potency, while eliminating COX2 inhibitory activity. SAR studies for PDE5 inhibition revealed an essential role for a carboxylic acid functionality at the 1-phenyl and the importance of the non-planar pyrazoline core over the planar pyrazole with the 5-phenyl moiety tolerating a range of substituents. These modifications led to new PDE5 inhibitors with approximately 20-fold improved potency to inhibit PDE5 and no COX-2 inhibitory activity compared with celecoxib. PDE isozyme profiling of compound 11 revealed a favorable selectivity profile. These results suggest that trisubstituted pyrazolines provide a promising scaffold for further chemical optimization to identify novel PDE5 inhibitors with potential for less side effects compared with available PDE5 inhibitors used for the treatment of penile erectile dysfunction and pulmonary hypertension.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pirazóis / Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 / Descoberta de Drogas / Inibidores da Fosfodiesterase 5 Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pirazóis / Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 / Descoberta de Drogas / Inibidores da Fosfodiesterase 5 Idioma: En Ano de publicação: 2020 Tipo de documento: Article