Your browser doesn't support javascript.
loading
Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology.
Bouteldja, Nassim; Klinkhammer, Barbara M; Bülow, Roman D; Droste, Patrick; Otten, Simon W; Freifrau von Stillfried, Saskia; Moellmann, Julia; Sheehan, Susan M; Korstanje, Ron; Menzel, Sylvia; Bankhead, Peter; Mietsch, Matthias; Drummer, Charis; Lehrke, Michael; Kramann, Rafael; Floege, Jürgen; Boor, Peter; Merhof, Dorit.
Afiliação
  • Bouteldja N; Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany.
  • Klinkhammer BM; Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
  • Bülow RD; Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
  • Droste P; Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
  • Otten SW; Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
  • Freifrau von Stillfried S; Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
  • Moellmann J; Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
  • Sheehan SM; Department of Cardiology and Vascular Medicine, RWTH Aachen University Hospital, Aachen, Germany.
  • Korstanje R; The Jackson Laboratory, Bar Harbor, Maine.
  • Menzel S; The Jackson Laboratory, Bar Harbor, Maine.
  • Bankhead P; Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
  • Mietsch M; Edinburgh Pathology, University of Edinburgh, Edinburgh, United Kingdom.
  • Drummer C; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
  • Lehrke M; Laboratory Animal Science Unit, German Primate Center, Goettingen, Germany.
  • Kramann R; Platform Degenerative Diseases, German Primate Center, Goettingen, Germany.
  • Floege J; Department of Cardiology and Vascular Medicine, RWTH Aachen University Hospital, Aachen, Germany.
  • Boor P; Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
  • Merhof D; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
J Am Soc Nephrol ; 32(1): 52-68, 2021 01.
Article em En | MEDLINE | ID: mdl-33154175
BACKGROUND: Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand for quantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation. METHODS: We investigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman's capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total. RESULTS: Multiclass segmentation performance was very high in all disease models. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standard morphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies. CONCLUSIONS: We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys from various species and renal disease models. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reconhecimento Automatizado de Padrão / Diagnóstico por Computador / Aprendizado Profundo / Rim Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reconhecimento Automatizado de Padrão / Diagnóstico por Computador / Aprendizado Profundo / Rim Idioma: En Ano de publicação: 2021 Tipo de documento: Article