Your browser doesn't support javascript.
loading
Detection and distribution of vbnc/viable pathogenic bacteria in full-scale drinking water treatment plants.
Guo, Lizheng; Wan, Kun; Zhu, Jianwen; Ye, Chengsong; Chabi, Kassim; Yu, Xin.
Afiliação
  • Guo L; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wan K; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhu J; Hangzhou water Group Company LTD, China.
  • Ye C; College of Environment & Ecology, Xiamen University, Xiamen 361102, China.
  • Chabi K; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Yu X; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment & Ecology, Xiamen University, Xiamen 361102, China. Electronic address: xyu@xmu.edu.cn.
J Hazard Mater ; 406: 124335, 2021 03 15.
Article em En | MEDLINE | ID: mdl-33160785
ABSTRACT
Viable but non-culturable (VBNC) bacteria have attracted widespread attention since they are inherently undetected by traditional culture-dependent methods. Importantly, VBNC bacteria could resuscitate under favorable conditions leading to significant public health concerns. Although the total number of viable bacteria has been theorized to be far greater than those that can be cultured, there have been no reports quantifying VBNC pathogenic bacteria in full-scale drinking water treatment plants (DWTPs). In this work, we used both culture-dependent and quantitative PCR combination with propidium monoazide (PMA) dye approaches to characterize cellular viability. Further, we established a method to quantify viable pathogens by relating specific gene copies to viable cell numbers. Ratios of culturable bacteria to viable 16S rRNA gene copies in water and biological activated carbon (BAC) biofilms were 0-4.75% and 0.04-56.24%, respectively. The VBNC E. coli, E. faecalis, P. aeruginosa, Salmonella sp., and Shigella sp. were detected at levels of 0-103 cells/100 mL in source water, 0-102 cells/100 mL in chlorinated water, and 0-103 cells/g in BAC biofilms. In addition, differences between the total and viable community structures after ozonation and chlorination were investigated. The relative abundance of opportunistic pathogens such as Mycobacterium, Sphingomonas, etc. increased in final water, likely due to their chlorine resistance. In summary, we detected significant quantities of viable/VBNC opportunistic pathogens in full-scale DWTPs, confirming that traditional, culture-dependent methods are inadequate for detecting VBNC bacteria. These findings suggest a need to develop and implement rapid, accurate methods for the detection of VBNC pathogenic bacteria in DWTPs to ensure the safety of drinking water.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água Potável / Purificação da Água Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água Potável / Purificação da Água Idioma: En Ano de publicação: 2021 Tipo de documento: Article