Your browser doesn't support javascript.
loading
The disubstituted adamantyl derivative LW1564 inhibits the growth of cancer cells by targeting mitochondrial respiration and reducing hypoxia-inducible factor (HIF)-1α accumulation.
Kim, Inhyub; Kim, Minkyoung; Park, Min Kyung; Naik, Ravi; Park, Jae Hyung; Kim, Bo-Kyung; Choi, Yongseok; Chang, Kwan Young; Won, Misun; Ban, Hyun Seung; Lee, Kyeong.
Afiliação
  • Kim I; Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.
  • Kim M; Department of Functional Genomics, University of Science and Technology, Daejeon, 34141, Korea.
  • Park MK; College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea.
  • Naik R; Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.
  • Park JH; College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea.
  • Kim BK; College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea.
  • Choi Y; College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea.
  • Chang KY; Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.
  • Won M; College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
  • Ban HS; OneCureGEN Co., Ltd, Seoul, Korea.
  • Lee K; Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea. misun@kribb.re.kr.
Exp Mol Med ; 52(11): 1845-1856, 2020 11.
Article em En | MEDLINE | ID: mdl-33235318
ABSTRACT
Targeting cancer metabolism has emerged as an important cancer therapeutic strategy. Here, we describe the synthesis and biological evaluation of a novel class of hypoxia-inducible factor (HIF)-1α inhibitors, disubstituted adamantyl derivatives. One such compound, LW1564, significantly suppressed HIF-1α accumulation and inhibited the growth of various cancer cell lines, including HepG2, A549, and HCT116. Measurements of the oxygen consumption rate (OCR) and ATP production rate revealed that LW1564 suppressed mitochondrial respiration, thereby increasing the intracellular oxygen concentration to stimulate HIF-1α degradation. LW1564 also significantly decreased overall ATP levels by inhibiting mitochondrial electron transport chain (ETC) complex I and downregulated mammalian target of rapamycin (mTOR) signaling by increasing the AMP/ATP ratio, which increased AMP-activated protein kinase (AMPK) phosphorylation. Consequently, LW1564 promoted the phosphorylation of acetyl-CoA carboxylase, which inhibited lipid synthesis. In addition, LW1564 significantly inhibited tumor growth in a HepG2 mouse xenograft model. Taken together, the results indicate that LW1564 inhibits the growth of cancer cells by targeting mitochondrial ETC complex I and impairing cancer cell metabolism. We, therefore, suggest that LW1564 may be a potent therapeutic agent for a subset of cancers that rely on oxidative phosphorylation for ATP generation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adamantano / Respiração Celular / Subunidade alfa do Fator 1 Induzível por Hipóxia / Mitocôndrias / Neoplasias Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adamantano / Respiração Celular / Subunidade alfa do Fator 1 Induzível por Hipóxia / Mitocôndrias / Neoplasias Idioma: En Ano de publicação: 2020 Tipo de documento: Article