Your browser doesn't support javascript.
loading
IGF2R-initiated proton rechanneling dictates an anti-inflammatory property in macrophages.
Wang, Xuefeng; Lin, Liangyu; Lan, Bin; Wang, Yu; Du, Liming; Chen, Xiaodong; Li, Qing; Liu, Keli; Hu, Mingyuan; Xue, Yueqing; Roberts, Arthur I; Shao, Changshun; Melino, Gerry; Shi, Yufang; Wang, Ying.
Afiliação
  • Wang X; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Lin L; The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
  • Lan B; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Wang Y; Shanghai Jiao Tong University School of Medicine, Shanghai Center for Systems Biomedicine Research, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
  • Du L; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Chen X; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Li Q; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Liu K; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Hu M; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Xue Y; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Roberts AI; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
  • Shao C; Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
  • Melino G; The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
  • Shi Y; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome 00133, Italy.
  • Wang Y; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. yufangshi@sibs.ac.cn yingwang@sibs.ac.cn.
Sci Adv ; 6(48)2020 11.
Article em En | MEDLINE | ID: mdl-33239287
Metabolic traits of macrophages can be rewired by insulin-like growth factor 2 (IGF2); however, how IGF2 modulates macrophage cellular dynamics and functionality remains unclear. We demonstrate that IGF2 exhibits dual and opposing roles in controlling inflammatory phenotypes in macrophages by regulating glucose metabolism, relying on the dominant activation of the IGF2 receptor (IGF2R) by low-dose IGF2 (L-IGF2) and IGF1R by high-dose IGF2. IGF2R activation leads to proton rechanneling to the mitochondrial intermembrane space and enables sustained oxidative phosphorylation. Mechanistically, L-IGF2 induces nucleus translocation of IGF2R that promotes Dnmt3a-mediated DNA methylation by activating GSK3α/ß and subsequently impairs expression of vacuolar-type H+-ATPase (v-ATPase). This sequestrated assembly of v-ATPase inhibits the channeling of protons to lysosomes and leads to their rechanneling to mitochondria. An IGF2R-specific IGF2 mutant induces only the anti-inflammatory response and inhibits colitis progression. Together, our findings highlight a previously unidentified role of IGF2R activation in dictating anti-inflammatory macrophages.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article