Your browser doesn't support javascript.
loading
Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303-313 K range.
Zairov, Rustem R; Dovzhenko, Alexey P; Sapunova, Anastasiia S; Voloshina, Alexandra D; Sarkanich, Kirill A; Daminova, Amina G; Nizameev, Irek R; Lapaev, Dmitry V; Sudakova, Svetlana N; Podyachev, Sergey N; Petrov, Konstantin A; Vomiero, Alberto; Mustafina, Asiya R.
Afiliação
  • Zairov RR; FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088. rustem@iopc.ru.
  • Dovzhenko AP; Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan, Russian Federation, 420008.
  • Sapunova AS; FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088.
  • Voloshina AD; FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088.
  • Sarkanich KA; Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan, Russian Federation, 420008.
  • Daminova AG; Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan, Russian Federation, 420008.
  • Nizameev IR; FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088.
  • Lapaev DV; Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky tract, 10/7, Kazan, Russian Federation, 420029.
  • Sudakova SN; FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088.
  • Podyachev SN; FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088.
  • Petrov KA; FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088.
  • Vomiero A; Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87, Luleå, Sweden. alberto.vomiero@ltu.se.
  • Mustafina AR; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy. alberto.vomiero@ltu.se.
Sci Rep ; 10(1): 20541, 2020 11 25.
Article em En | MEDLINE | ID: mdl-33239623
ABSTRACT
The work introduces hydrophilic PSS-[Tb2(TCAn)2] nanoparticles to be applied as highly sensitive intracellular temperature nanosensors. The nanoparticles are synthesized by solvent-induced nanoprecipitation of [Tb2(TCAn)2] complexes (TCAn - thiacalix[4]arenes bearing different upper-rim substituents unsubstituted TCA1, tert-buthyl-substituted TCA2, di- and tetra-brominated TCA3 and TCA4) with the use of polystyrenesulfonate (PSS) as stabilizer. The temperature responsive luminescence behavior of PSS-[Tb2(TCAn)2] within 293-333 K range in water is modulated by reversible changes derived from the back energy transfer from metal to ligand (M* → T1) correlating with the energy gap between the triplet levels of ligands and resonant 5D4 level of Tb3+ ion. The lowering of the triplet level (T1) energies going from TCA1 and TCA2 to their brominated counterparts TCA3 and TCA4 facilitates the back energy transfer. The highest ever reported temperature sensitivity for intracellular temperature nanosensors is obtained for PSS-[Tb2(TCA4)2] (SI = 5.25% K-1), while PSS-[Tb2(TCA3)2] is characterized by a moderate one (SI = 2.96% K-1). The insignificant release of toxic Tb3+ ions from PSS-[Tb2(TCAn)2] within heating/cooling cycle and the low cytotoxicity of the colloids point to their applicability in intracellular temperature monitoring. The cell internalization of PSS-[Tb2(TCAn)2] (n = 3, 4) marks the cell cytoplasm by green Tb3+-luminescence, which exhibits detectable quenching when the cell samples are heated from 303 to 313 K. The colloids hold unprecedented potential for in vivo intracellular monitoring of temperature changes induced by hyperthermia or pathological processes in narrow range of physiological temperatures.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article