Your browser doesn't support javascript.
loading
Consequences of Molecular Architecture on the Supramolecular Assembly of Discrete Block Co-oligomers.
Lamers, Brigitte A G; van der Tol, Joost J B; Vonk, Kasper M; de Waal, Bas F M; Palmans, Anja R A; Meijer, E W; Vantomme, Ghislaine.
Afiliação
  • Lamers BAG; Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  • van der Tol JJB; Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  • Vonk KM; Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  • de Waal BFM; Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  • Palmans ARA; Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  • Meijer EW; Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  • Vantomme G; Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Macromolecules ; 53(22): 10289-10298, 2020 Nov 24.
Article em En | MEDLINE | ID: mdl-33250525
ABSTRACT
Supramolecular block copolymers composed of discrete blocks have promising properties for nanotechnology resulting from their ability to combine well-defined morphologies with good bulk material properties. Here, we present the impact of a well-defined siloxane block in either the main-chain or present as pendant grafts on the properties of supramolecular block copolymers that form ordered nanostructures with sub-5 nm domains. For this, two types of supramolecular block copolymers were synthesized based on the ureidopyrimidinone-urethane (UPy-UT) motif. In the first, oligodimethylsiloxanes (oDMS) of discrete length were end-capped with the UPy-UT motif, affording main-chain UPy-UT-Si n . In the second, the UPy-UT motif was grafted with discrete oDMS affording grafted UPy-UT- g -Si 7 . For the two systems, the compositions are similar; only the molecular architecture differs. In both cases, crystallization of the UPy-UT block is in synergy with phase segregation of the oDMS, resulting in the formation of lamellar morphologies. The grafted UPy-UT- g -Si 7 can form long-range ordered lamellae, resulting in the formation of micrometer-sized 2D sheets of supramolecular polymers which show brittle properties. In contrast, UPy-UT-Si n forms a ductile material. As the compositions of both BCOs are similar, the differences in morphology and mechanical properties are a direct consequence of the molecular architecture. These results showcase how molecular design of the building block capable of forming block copolymers translates into controlled nanostructures and material properties as a result of the supramolecular nature of the interactions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article